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ABSTRACT 

 

 

This thesis presents a numerical modeling and an experimental program 

approach to investigate the buckling behavior of inflatable beams made from woven 

fabric composite materials.  

In the numerical study, the Isogeometric Analysis (IGA) is utilized to analyze 

the bucking response of inflatable beams subject to axial compressive load and 

predict the critical load at which the first wrinkle occurs. In the numerical model, the 

Timoshenko’s kinematics principle is used to build a 3D model of inflating 

orthotropic beams. In this modeling process, geometrical non-linearity is 

considerated by using the energy concept that accounts for the change in membrane 

and strain energies when the beams are bent. By using Lagrangian and virtual work 

principles, nonlinear equilibrium equations were derived. These equations are then 

discretized by using NURBS basis functions inherited from IGA approach to derive 

the global nonlinear equation. The well-known Newton-Raphson algorithm is then 

used to solve the nonlinear equation. The numerical results are then calibrated with 

the experimental one. It was found that a good agreement between IGA predictions 

and test results is achieved. The numerical model could be used for other parametric 

studies to investigate the influences of material and geometrial parameters on the 

buckling behaviour of inflatable beams. 

In the experiment study, the mechanical properties of the woven fabric 

composite material used in frabrication of inflatable beams are determined and the 

biaxial buckling test is carried out. The experimental studies are performed under 

various inflation pressures to characterize the orthotropic mechanical properties and 

the nonlinear buckling behaviors. Load versus deflection curve of inflating beams 

beam with different air pressures obtained from the experimentsare are illustrated., 

and the first wrinkles of the beams when buckling happens is also monitored. 

Therefore, the maximum load carrying capacity of the inflating beam with respect to 

the appearance of the first wrinkle is totally found. In addition, the critical buckling 
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load is determined through distinct load cases. Then, the discrepancy is evaluated 

among the proposed orthotropic and isotropic models in literature. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background information 

The inflating structures are common structures which are currently used in 

amusing and performing projects, such as buoy houses in children's play areas, 

welcome gate, animals images, etc. In Vietnam, the inflating structures are a 

relatively new field. In general, designing and analyzing of the inflating structures for 

large projects have been facing difficult challenges. This is due to the fact that the 

structural responses of inflating structures considerbly depends on the infilled air and 

material of the skin. In addition, there is a shortage in the experimental studies of of 

inflating structures. Some researchers haved studied the applications of inflating 

structures for practical purposes based on analutical and numerical modeling 

approaches. Most of those have been forcusing on the structural performance of 

infalting beams, which are the fundamental components of the main structures. 

However, the study for buckling and stability responses of inflating beams is still 

limited.  

 Recently, the orthotropic fabric materials are widely used in various industrial 

field. The continuous improvement in the weaving technique has allowed the 

construction fabrics becoming more strong and be more resistant to different 

consitions. The adoption of orthotropic fabric materials to inflating structures have 

been considered recently thanks to its advantage mechanical properties. However, the 

study for its applications as infalting beams has not been widely investigated in both 

experimental and numerical modeling manners. In terms of economic aspects, the 

numerical modeling approach is much more preferable in recent years thanks to the 

advantages in computer science. However, the use of analytical approach or 

traditional finite element method still has their own limits. 

 Isogeometric Analysis (IGA) is an emerging numerical method that have been 

widely employed and developed in various computational problems recently. The 

basic concept of IGA is to integrate the tools of Computer-Aided Design (CAD) with 
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Finite Element Analysis (FEA). Non-uniform rational B-spline (NURBS) functions, 

which are commonly used for geometrical modeling in CAD softwares, are exploited 

in the framework of FEA. This combination could allow for a smooth transition in 

designing process as the transformation between sketching concept and analysis 

modeling could be dismissed. The NURBS basis functions inherited from CAD 

technologies are employed to represent the geometries of models and acts as 

interpolations for physical fields and state variables. Therefore, exact representation 

of geometries with high-smooth properties are easy to obtained. In addition, a better 

rate of convergence could be provided thanks to the higher order capacity of NURBS 

functions. Another dominant feature of IGA is the ability to provide higher order of 

continuity among the elements of a patch. This quality, which is obtained from the 

nature of B-spline and NURBS basis functions, is in contrast to intrinsic C0 continuity 

of Lagrange interpolation functions of traditional FEA. In general, those advanced 

features of IGA in geometrical modeling and providing high-continuity interpolations 

allow IGA to be the best candidate for the analyses of small-scale structures based on 

the high-order continuum theories. 

1.2 Motivation of the thesis 

 As the use of woven fabric composite materials have become more popular 

nowadays, the need for investigating their applications in inflating structures 

becomes crutial. Therefore, this study is devoted to find out the structural 

performacne of woven fabric beams under compressive loads in both experiemtnal 

and numerical modelling approaches. In addition, the application of IGA technique 

to investigate the stability behaviour of inflating havenot been conducted elsewhere 

before, therefore a new numerical approach based on IGA is worthly conducted. 

1.3 The objectives and scope of the study 

The main objectives of this study is to investigate the critical loads of inflating 

beam made from composite textiles in both experimental and numeriacl modeling 

approaches. There for the goals of this study could be summarized as follows 

1) Develope an experimental program, in which:  
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   1.1) Determine textile composite material constants. These constants are 

used as input data for calculation programs. 

   1.2) Set up experiments on inflatable beams in terms of equipments and 

supplies that can be found locally and purchased from abroad. 

   1.3) Determine critical load of steam beam structures of composite textile 

materials with different boundary conditions. 

   1.4) Investigate the effect of initial internal pressure  on the strength of the 

inflatable beam. 

   1.5) Investigate the effect of initial internal pressure on critical load causing 

buckling of  inflatable beam structure. 

2) Apply the "Isogeometric Analysis - IGA" technique develope a numerical 

program to determine the critical load for the composite woven fabric's inflating beam 

with different boundary conditions. A piece of code in MatLAB is developed. 

 3) Compare the experimental results and those obtained from the numerical 

approach to validate the accuracy of the developed program. 

1.4 Methodology 

In order achieve the study scopes, this thesis have used several methods as 

follows: 

- Studying literature review related to the subjects of textile composite 

materials and inflating structures. 

- Refer, study and synthesize critical load calculation models for inflatable 

beam structures of composite textiles to choose a suitable model for analytical 

equations and finite element calculation models. The goal of this section is to have 

more analytical tools and traditional finite element tools to verify the IGA calculation 

results and the experimental results of the thesis. 

- Review of NURBS-based geometry and isogeometric analysis (IGA). 

- Derive theories for nonlinear buckling analysis of inflating composite 

structures under the IGA framework and investigate numerical models. 

- Construct analytical model and experiment program for verifying the 

proposed theory. 
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1.5 Outline of the thesis 

The contents of this thesis are briefly organized as follows: 

- Chapter 1 discusses a general introduction to background information, the 

objective and scope of this study, the methodology and the outline of the thesis. The 

significances and contributions of the study are also pointed out. It could be observed 

that constructing an effective analysis model for inflating structures is essential. 

- Chapter 2 gives a brief review of fibous compiste materials and their 

applications. A literature review on previous studies on inflating structures is 

presented. In addition, a short review on the IGA is discussed. 

- Chapter 3 is presented to discuss about basic features of IGA and theoretical 

development of stability governing equatuons of buckling problems. In the IGA 

introductory part, fundamental concepts that play inportant role in the IGA apporach, 

e.g knot vector, B-spline, NURBS basis functions, and etc, are presented. The 

advantages and disadvantages of IGA comparation and finite elementingmethod are 

also shown discussed as well. The remaining part of this chapter is about the 

theoretical development of stability governing equations of the buckling problem. 

Basic assumptions are presented and the deriviation of the gorvernign equations of 

the stability problems are discussed in detail. 

- Chapter 4 is devoted to the developments of the IGA-based numerical model. 

The procedure to develop the IGA-based numerical model is presented and the 

general procedure to solve the global equation are addressed. This study is dedicated 

to linear eigen analysis and nonlinear buckling analysis of inflating beams that made 

of orthotropic materials when using isogeometric analyis. The influences of 

geometric nonlinearities and the inflation pressure on the stability response of 

inflating beam with different boundary conditions are assessed. The beam aspect 

ratios influenced on the buckling load coefficient are also indicated. The achieved 

results and experimental results are compared with available ones in literature as well. 

- Chapter 5 presents materials selection, prototyping plan, besides also checks 

buckling, the relationship between load and curve by varying pressure, etc. An 

experimental program for buckling behavior of inflating beams fabricated from 
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woven fabric composites is presented in this chapter. It begins with as brief review 

of buckling of thin-walled shell structures, followed by the material test of woven 

fabric composites. Next, the fabrication procedure of inflating beams and the 

buckling testing setup are described in detail. Discusion and remarks on the results 

obtained are then given. 

- Chaper 6 addresses and summaries on research contributions and 

achievements of this work is presented. Important conclusions and findings are also 

drawn in this chapter. Finally, some suggestions for further studies are discussed. 

1.6 Original contributions of the thesis 

In this study, the original contributions of the thesis are covered as follows: 

- Investigation of an extension of an IGA-based numerical approach for an  

application in studying the nonlinear buckling behaviors of inflating beams made 

from woven fabric composite materials. In the proposed method with a HOWF, the 

IGA is examined based on the modelling 3D Timoshenko beam. The finite 

elementing model is established with C1-type continuity via quadratic NURBS-based 

Timoshenko elements. Additionlly, the biaxial orthotropic mechanical properties  of 

the materal are determined as the material inputs for finite elementing model and 

IGA. 

- Experimental investigation on determining the critical buckling load and 

load-carrying capacity of the inflating composite fabric beams. 

- Study on effects of different air pressures to determine the load-displacement 

relation of the inflating beam. 

1.7 Significances of the thesis 

Nowadays, general various types of materials including wood, metal, stone 

and fabric are widely used in different induustrial fields. The inflating structures have 

required great demands to alternative the traditional meterials, including inflating 

columns, beams and arches. With the continual improvement in the weaving 

technique, these construction fabrics are often formed into closed tubes, which are 

inflating to withstand the self and other loads. The advantage between modern textile 

materials and conventional materials is that the former can be tailored to particular 
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requirements of certain applications, easy to deploy, having lightweight and low 

volume storage. Such inflating structures are often employed in the fields of 

aerospace, civil engineering, military, marine, agriculture and entertainment. This 

requires a good knowledge about the behaviour of materials for structural design and 

optimization. 

 There are still not many in-depth research results on structures as well as stable 

bearing capacity of inflating structures given in Vietnam until present. There is a lack 

of scientific document on referring to the research and application of this new 

material in construction. Therefore, the thesis with its importance is given to research, 

develop, build models, determine the mechanical properties of technical fabrics as 

well as the calculation theories of inflating structures, for use in construction. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 An overview of fibous composite materials 

Besides construction materials such as wood, stone, metal ..., fabric materials 

today are also widely used in construction works. With continuous improvement in 

the weaving technique, the construction fabrics are becoming more and more 

resistant. These construction fabrics are often used to form closed tubes, which are 

infused with air so that the critical bodies and other loads can be loaded. The bellows 

are the structural foundations in many constructions around the world: moon-based, 

site model location, stadium dome, exhibition halls, outdoor temporary structures. 

The priority of using new materials for structures over type data transmission systems 

is light weight, easy deployment and rearrangement, it is possible to shape to special 

shapes image in some applications and use less storage space. Durable, low 

production costs and low development costs (without the use of tools) also offer 

various benefits compared to other structures. 

The field of composite materials is both old and new. It is old in the sense 

that most natural objects, including the human body, plants, and animals, are 

composites. It is new in the sense that only since the early 1960s has engineers and 

scientists exploited serious the vast potential of fabricated fibrous composite 

materials. The development of new composites and applications of composites has 

been accelerated. The textile structural composite cited in this study should be 

considered as typical of modern materials. As a well-known definition, a composite is 

a material composed of two or more distinct phases Figure 2.1. Thus, a composite is 

heterogeneous. The fibrous composites are materials in which one phase acts as a 

reinforcement of a second one. The second phase is called the matrix. The challenge 

is to combine the fibers and the matrix to form the most efficient material for the 

extended application. 

Textile preforms are fibrous assembly with prearranged fiber orientation 

preshaped and often preimpregnated with matrix for composite formation. The 
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microstructural organization of fibers within a preform, or fiber architecture, 

determines the pore geometry, pore distribution and tortuosity of the fiber paths 

within a composite. Textile preforms not only play a key role in translating fiber 

properties to composite performance but also influence the ease or difficulty in 

matrix and consolidation. Textile preforms are the infiltration structural backbone 

for the toughening and net shape manufacturing of composites. 

The flexible fibers, such as glass, carbon, and aramid, can be woven into textile 

fabric, which can then be impregnated with a matrix material. A wide variety of 

weave patterns are available. Plain woven composites or homogeneous orthotropic 

woven fabric (HOWF) composites are orthotropic materials which can be classified 

into two patterns, a plain weave (every fiber over and under every other perpendicular 

fiber) and a two-harness satin weave (under only every two fibers). Woven fabrics 

naturally have better in-plane transverse effective properties than unidirectional 

lamina. They lay better in structural configurations with substantial curvature and 

are more durable during  handling. 

  

Figure 2.1 Multiphase Media [1] 

In addition, a wide variety of fibers and matrix materials are now available for 

use. The selection of the specific fiber and matrix to be used in a composite is not 

arbitrary. The two (or more) phases of a composite must be carefully chosen for 

structural efficiency. The composite generally must be resistant to debonding at the 

fiber/matrix interface, and it must also be resistant to fiber breakage and matrix 

cracking. However, in application where it is desired to dissipate energy during the 

failure process (such as in crashworthy or impact-resistant structures), progressive 

fiber failure and fiber/matrix debonding (damage development) are positive features 
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because they dissipate energy. Thus, a major challenge for the mechanical and 

metarial community is to understand the factors that affect damage development and 

to know how to design for it under severe environmental and mechanical loading 

conditions, including the fabrication phase as well as the in-service phase. 

2.1.1 Fiber types 

A wide variety of fibers is available. Glass fibers have been used since the 

1930s; however, it was only in the late 1950s that fibers which exhibit significantly 

higher stiffness were developed for structural applications. These new high-specific 

stiffness (stiffness divided by density) and high-specific strength (strength divided by 

density) fibers are called advanced fibers. Composites made from them are called 

advanced composites. An in-depth discussion of fiber types and fabrication methods 

can be found in the book by Chawla K.K. [1]. 

As indicated in Table 2.1, different fibers have different morphology, origin, 

size, and shape. Some fibers, such as glass, carbon, and alumina, are supplied in the 

form of tows (also called rovings or strands) consisting of many individual, 

continuous fiber filaments. 

Table 2.1 Typical Features of Fibers  

Fiber Type Origin Fabrication 
Filament 

(μm)  

Filaments/ 

Tow 

Glass S-2 glass  Molten glass Fiber-drawing 6-4 2000 

Organic Kevlar 49 Liquid Crystal Spinning 12 1000 

Carbon AS4 PAN Heat & stress 8 12,000 

P-100S Pitch Heat 10 2000 

IM8 PAN Heat & stress 5 12,000 

Ceramic Boron Tungsten core CVD 142 1 

Nicalon (SiC) Polymer 

Precursor 

Pyrolysis 15 500 

SCS-6 (SiC) Carbon core CVD 127 1 

Alumina Slurry mix Spin and heat 20 1 

 

The size of the individual filaments ranges from 3 to 147 μm (0.1x10-3 - 

5.8x10-3 in). The maximum use temperature of the fibers ranges from as low as 2500C 
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(4820F) to as high as 20000C (36320F); however, in most applications, the use 

temperature of a composite is controlled by the use temperature of the matrix. 

Boron is a ceramic monofilament fiber manufactured by chemical vapor 

deposition of boron on a tungsten core. Thus the fiber itself is a composite. It has a 

circular cross section and has been produced over a wide range of fiber diameter (33 

- 400 μm) with the typical boron fiber diameter being approximately 140 μm. This is 

a relatively large fiber diameter and results in lower flexibility, in particular because 

boron is a very britle material. The mismatch in the coefficient of thermal expansion 

of the tungsten core and the deposited boron results in residual stresses which develop 

during fabrication cool-down to room temperature. 

Carbon filaments are made by controlled pyrolysis (chemical decomposition 

by heat) of a precursor material in fiber from such as polyacrylonitrile, rayon, or pitch 

by heat treatment at temperatures ranging from 1000 - 30000C, with the fiber 

properties varying considerably with the fabrication temperature. Individual carbon 

filaments have a diameter of 4-10μm. The small filament size and tow arrangement 

result in a very flexible fiber which can actually be tied into a knot without breaking 

the fiber. The modullus and strength of carbon fibers is controlled by the process, 

which consists of thermal decomposition of the organic precursor under well-

controlled conditions of temperature and stress. 

A second type of carbon fiber is made from a pitch precursor. The pitch fibers 

are made by spinning a petroleum-based product to form a pitch precursor. The cross 

section of carbon fibers is often noncircular. Indeed, many have the shape of a kidney 

bean. Carbon fibers have a heterogeneous microstructure consisting of numerous 

lamellar ribbons. The morphology is very dependent on the manufacturing process. 

Glass fibers are available in a variety of froms: E-glass and S-2 (Owens-

Corning Fiberglas Corporation) are the most common for structural applications. E-

glass is used where strength and high electrical resistivity are required, and S-2 glass 

is used in composite structural applications which require high strength, modulus, 

and stability under extreme temperature and corrosive environments. Glass fibers are 

produced by drawing molten glass through numerous tiny orifices in a gravity-fed 
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tank to form continuos fialaments which are gathered together in a strand or tow. This 

fabrication method results in individual filaments that are small in diameter, isotropic, 

and very flexible. 

Alumina fibers are ceramics fabricated by spinning a slurry mix of alumina 

particles and additives to form a yarn which is then subjected to controlled heating. 

The most important feature of alumina fibers is their strength retention at high 

temperature. 

Aramid is an organic fiber which is melt-spun from a liquid polymer solution. 

The Du Pont company developed these fibers and sells their product under the trade 

name Kevlar, four grades of Kevlar with varying engieering properties are available. 

The morphology of the fiber consists of radially arranged crystalline sheets resulting 

in anisotropic properties. The filaments are small in diameter (≈12μm) and partially 

because of this, very flexible. 

Silicon carbide (SiC) is a ceramic fiber made by one of two methods. The first 

method consists of chemical vapor deposition of silicon and carbon onto a pyrolytic 

graphite-coated carbon core. This fiber (developed by AVCO Specialty Materials Co. 

in the United States and designated SCS-6) is very similar in size and microstructure 

to boron fiber. The SCS-6 fiber is relatively stiff in flexure, having a diameter of 140 

μm (0.00556 in). The second method for producing silicon car-bide fibers is 

controlled pyrolysis of a polymeric precursor. This method results in filaments which 

are similar to carbon filaments in term of size (≈14μm, 0.00056 in) and 

microstructure. The diameter of a Nicalon filament is approximately one-tenth that 

of an SCS-6 fiber, and hence it is much more flexile. 

Typical engineering properties of specific fibers are compared with the 

properties of structural and matrix materials in Table 2.2. The modulus and strength 

values are for tensile loading along the axis of the fiber. Possibly the most important 

properties given in Table 2.2 are the specific stiffness, the specific strength, and the 

coefficient of thermal expansion. The specific stiffness and strength values 

normalized with those of aluminum. 
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Table 2.2 Properties of Engineering Materials, Fibers and Matrix 

 

As indicated in Table 2.2 advanced fibers exhibit a broad range of properties. 

Indeed, the properties of carbon fibers can vary significantly depending upon the 

fabrication process. The fiber data in Table 2.2, are for the fiber only, with the loading 
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METALS 

Steel 7.8 200 0.32 1724 1.0 1.2 12.8 

Aluminum 2.7 69 0.33 483 1.0 1.0 23.4 

Titanium 4.5 91 0.36 758 0.95 1.2 8.8 

FIBERS (Axial Properties) 

AS4 1.80 235 0.20 3599 5.1 11.1 -0.8 

T300 1.76 231 0.20 3654 5.1 11.5 00.5 

P100S 2.15 724 0.20 2199 13.2 5.5 -1.4 

IM8 1.8 310 0.20 5171 6.7 16.1 -- 

Boron 2.6 385 0.21 3799 5.8 8.3 8.3 

Kevlar 49 1.44 124 0.34 3620 3.6 13.9 -2.0 

SCS-6 3.3 400 0.25 3496 5.1 6.1 5.0 

Nicalon 2.55 180 0.25 2000 2.8 4.4 4.0 

Alumina 3.95 379 0.25 1585 3.7 1.9 7.5 

S-2 Glass 2.46 86.8 0.23 4585 1.4 10.4 1.6 

E-Glass 2.58 69 0.22 3450 1.05 7.5 5.4 

Sapphire 3.97 435 0.28 3600 4.3 5.1 8.8 

MATRIX MATERIALS 

Epoxy 1.38 4.6 0.36 58.6 0.08 0.4 63 

Polyimide 1.46 3.5 0.35 103 0.03 0.4 36 

Copper 8.9 117 0.33 400 0.5 0.3 17 

Silicon 

carbide 

3.2 400 0.25 310 4.9 0.5 4.8 
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along the fiber axis. These properties are reduced significantly when the fiber is used 

with a matrix material to form a composite. The specific properties are reduced even 

further when the loading is in a direction other than along the fibers. Nevertheless, 

actual experience has shown that significant weight savings are possible in primary 

engineering structures through the use of advanced composites. As will be discussed 

later in this chapter, weight is not the only reason for choosing composites; indeed, 

for some applications composites are chosen when there is a weight penalty, but there 

are other advantages such as heat transfer characteristics or noncondutive properties 

which are more important.  

2.1.2 Matrix Materials 

There are some materials including polymers, metal and ceramics are used as 

matrix materials in continuous fiber composites. Polymeic matrix materials can be 

further subdvided into thermoplastics and thermosets. The thermoplastics soften 

upon heating and can be reshaped with heat and pressure. Thermoplasyic polymers 

used for composites include polyphenylene sulfide (PPS), and polysulfone. The 

thermoplastic composites offer the potential for higher toughness and high volume, 

low cost processing. They have a useful temperature range upwards of 2250C (4370F). 

Thermoset polymers become cross linked during fabrication and do not soften upon 

reheating. The most comom thermoset polymer matrix materials are polyesters, 

epoxies, and polyimides. Polyesters are used extensively with glass fibers. They are 

inexpensive, are lightweight, have a useful temperature range up to 1000C (2120F), 

and are somewhat resistant to environmental exposures. Epoxies are more expensive 

but have better moisture resistance and lower shrinkage on curing. Their maximum 

use temperature is in the vicinity of 1750C (3470C). Polyimides have a higher use 

temperature (3000C, 5720F) but are more difficult to fabricate. 

The most common metals used as matrix materials are alumium, titanium, and 

copper. Reasons for choosing a metal as the matrix material include higher use 

temperature range, higher transverse strength, toughness (as contrasted with the 

brittle behavior of polymers and ceramics), the absence of moisture effects, and high 

thermal conductivity (copper). On the negative side, metals are heavier and more 
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susceptible to interfacial degradation at the fiber/matrix interface and to corrosion. 

Aluminum matrix composites have a use temperature upwards of 3000C (5720F), and 

titanium can be used at 8000C (14700F). Essentially all materials exhibit degradation 

of properties at highest temperatures. The main reasons for choosing ceramics as the 

matrix include a very high use temperature range (>20000C, 36000F), high elastic 

modulus, and low density. The major disadvantage to ceramic matrix materials is 

their brittleness, which makes them susceptible to flaws. Carbon, sillicon carbide, and 

silicon nitride are ceramics that have been used as matrix materials. 

Carbon/carbon is a compositte that consists of carbon fibers in a carbon matrix. 

The primary advantage of this material is that it can withstand temperature in excess 

of 22000C (40000F). The disadvantage of caron/carbon composites is that their 

fabrication is an expensive, multistage process. Thus this material is used only where 

its high temperature capabilities are essential for the application. 

2.1.3 Composite Properties 

Table 2.3 presents typical average or effective properties for unidirectional 

composites. The designation of the different composites consists of the name of the 

fiber followed by the name of the matrix. Unidirectional fibrous composites exhibit 

different  properties in different directions. This is reflected in Table 2.3 by the labels 

axial and transverse, which refer to properties in the direction of the fiber (axial) and 

the properties perpendicular to the fiber (transverse). The properties of a 

unidirectional composite are also a function of the volume fraction of fibers. 

Table 2.3 Typical properties of unidirectional composites (Chawla K.K. [1]) 
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Transverse 

modulus E2, GPa 

10.50 10.8 5.5 139 145 11.5 

Poisson’s ratio ν12 0.30 0.24 0.34 0.24 0.27 0.27 

Poisson’s ratio ν23 0.59 0.59 0.37 0.36 0.40 0.40 

Shear modulus G12, 

GPa 

5.61 5.65 2.07 57.6 53.2 3.45 

Shear modulus G23, 

GPa 

3.17 3.38 1.4 49.1 51.7 4.12 

Modulus ratio 

E1/E2 

12.6 12.3 14.8 1.6 1.5 4.6 

Axial tensile 

strength 𝜒𝜏, MPa 

2137 1513 1380 1290 1517 1724 

Transverse tensile 

strength 𝛶𝜏, MPa 

53.4 43.4 27.6 117 317 41.4 

Strength ratio 𝜒𝜏/

𝛶𝜏 

27 35 50 11 4.8 42 

Axial CTE α1, μ/0C -0.8 -0.77 -4 5.94 6.15 6.84 

Transverse CTE α2, 

μ/0C 

29 25 57 16.6 7.90 29 

Fiber volume 

fraction Vf 

0.62 0.62 0.55 0.46 0.39 0.60 

Ply thickness, mm 0.127 0.127 0.127 0.178 0.229  

2.1.4 Advantages of composite 

The initial development and application of advanced fibrous composites were 

pursued primarily because of the potential for lighter structures. The first applications 

in the early 1960s were in aerospace structures, where weight critically affects fuel 

consumption, performance, and pay load, and in sports equipment, where lighter 

equipment often leads to improved performance. Today fibrous composites are often 

the materials of choice of designers for a variety of reasons, including low weight, 

high stiffness, high strength, electrical conductivity low thermal expension, low or 

high rate of heat transfer, corrosion resistance, longer fatigue life, optimal design, 

reduced maintenance, fabrication to net shape, and retention of properties at high 

operating temperature. 
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The first advanced feature of composite is its specific stiffness and specific 

strength. Undoubtedly the most often cited advantage of fibrous composites is their 

high specific stiffness and high specific strength as compared with traditional 

engineering materials. These properties lead to improved performance and reduced 

erergy consumption, both vitally important in the design of almost all engineering 

structures. Because composites are fabricated, they can be engineered to meet the 

specific demands of each particular application. Available design options include the 

choice of materials (fiber and matrix), the volume fraction of fiber and matrix, 

fabrication method, layer orientations, number of layers in a given direction, 

thickness of individual layers, type of layer (unidirectional or fabric), and the layer 

stacking sequence. This vast array of design variables for composites contrasts 

sharply with more traditional engineering materials, where the choices are much more 

limited. The availability of a wide array of structured materials means that more 

efficient structures can be fabricated with less material waste. Composites can be 

designed to have the desired properties in specified directions without overdesigning 

in other directions. 

The fatigue lives of several composites are found out to that the material can 

withstand under tensile stress. Clearly, composites exhibit much better resistance to 

fatigue than does aluminum. This can be critical in structures such as aircraff, where 

fatigue life is often the most important design consideration. Improved fatigue life is 

one of the major reasons why there has been a shift to composites by the aircraft 

industry. Fatigue life is also important for many other structures that experience 

cyclic loading, such as transportation vehicles, bridges, industrial components, and 

structures exposed to variable wind or water loading. 

For the dimensional stability, it is seen that nearly all structures are exposed 

to temperature changes during their lifetimes. The strains associated with temperature 

change can result in changes in size or shape, increased friction and wear, and thermal 

stresses. In some applications these thermal effects can be critical. Increased friction 

between moving parts can result in failure because of overheating. Thus, there are 

many applications where a zero or near zero-CTE material can result in significant 
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bebefits. Through proper design, it is possible to have zero-CTE composites or to 

design the CTE of the composites to match that of other components to minimize 

thermal mismatch and the resulting thermal stresses. 

Polymer and ceramic matrix materials can be selected to make composites 

resistant to corrosion from moisture and other chemicals. Current applications of 

glass fiber composites that have been driven by corrosion considerations include 

filament wound underground storage tanks, strutural members for offshore drilling 

platforms and chemical plants, sucker rod used in pumping oil from wells, pipe, and 

domestic applications including doors, window frames, and deck funiture in coastal 

regions where saltwater corrosion is a major problem. 

Polymeric and ceramic matrix composites can often be made to be essentially 

maintenance free compared with traditional engineering materials. This is true 

primarily because of the corrosion resistance. Reduced maintenance can represent 

substantial savings and should be considered in all total cost evaluations. 

Unfortunately, all too often, cost decisions are based primarily on the intitial capital 

expenditure without regard for the total lifetime cost of maintaining the structure. 

Corrosion resistance results in longer life of a structure and hence reduced 

replacement cost. 

Composite structures can be fabricated efficiently through the use of 

automated methods such as filament winding, pultrusion, and tape laying. 

Efficiencies in fabrication can also be achieved because composites can be fabricated 

with very little material waste. In many case, composite components can be fabricated 

exactly to size specifications with no materials waste. This is in stark contrast to the 

use of metals, where it is often necessary to “hog out” large portions of material to 

arrive at the final configuration. Fabrication costs also are directly related to the 

number of parts in a structure. The use of composites can be substantially reduced 

this number because of the ability to fabricate to net shape and because of the use of 

bonded rather than riveted joints. As an example, two sections of a fuselage were 

made by riveting aluminum components and adhesively bonding compositte 

components. The number of parts in the aluminum structure was 11000, whereas the 
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composite structure had only 1000. This tenfold reduction represents a significant 

saving in both the cost of components and the cost of assembly. 

It is desirable that many engineering structures be elctrically nonconducing. 

Excellent examples are the glass/polyester ladders and booms which have replaced 

steel and aluminum in order to reduce the possibility of electrocution. Nonconducting 

components are also important for applications in the electronics industry, whether it 

be a computer chip or the entire building in which the chips are fabricated. In contrast, 

copper matrix composites are now under consideration for high temperature 

applications because of the high thermal conductivity of copper. Copper matrix 

composites can serve as radiators in regions where it is necessary to maintain lower 

temperature. It is noteworthy that the fiber glass ladders and the copper matrix 

composites are chosen even though there is a weght penalty. In evaluating the cost 

competitiveness of structures made from composite materials the total life time cost 

should be included. Per pound, composites are usually more expensive than 

traditional materials; however, many other factors must be included in a meaningful 

cost comparison. First, fever pounds of composite material are requred because of the 

higher specific stffness and strength. Second, it is possible that fabrication costs can 

be lower. Third, transportation and erection costs are generally lower for composite 

structures. Finally, the composite structure will generally last much longer than the 

traditional material and will requie much less maintenance during its life. Composite 

materials have been shown to be cost competitive in a wide variety of aerospace, 

automotive, industrial, domestic, oil drilling, and elactronic applications, among 

orthers. 

2.2 Practical applications of inflating composite structures 

Advanced lightweight laminated composite structural elements are 

increasingly being introduced to new designs of modern aerospace structures for 

enhancing their structural efficiency and performance. The introduction of new fiber 

materials, such as glass, carbon or aramid fibers with orthotropic material behavior 

have motivated a deep study of such elements which are used to build membrane and 

thin shell structures. 
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Inflating structures are membrane components made of elastic/plastic fabric 

textiles that are inflating by using air pressure to maintain the shape and stiffness of 

these structures. Advantage of inflating beams is to be able to absort impact loads, 

toughness and easy assembly, light weight and require little space for storage. Low 

manufacturing cost is also an effective factor in industrial application. 

2.2.1 Aerospace 

In recent years, developments in space technologies have focused on reducing 

the prohibitive costs of space missions Veldman [2]. In the space industry, initiatives 

a re currently underway that seek to unlock the cost-saving potential of recent 

breakthroughs in materials science. Specifically, these research initiatives hope to 

achieve significant reductions in launch mass and volume of orbital payloads by 

replacing conventional spacecraft materials with new ultra-light alternatives. In this 

regard, inflating technology is a promising solution for deploying large systems in 

space. They are well suited for application in a variety of large space systems 

including: One of the earliest applications of inflating structures in the space is the 

project of inflating satellites Veldman [2]. NASA scientists are now using inflating 

technology to build a telescope that is nearly twice as large as Hubble (The first space 

telescope launched) but that weight only about one-sixth as much as Hubble. This 

telescope would be made using the inflating technology. Some examples on the use 

of composite materials on aerospace are illustrated in Figures 2.2 to 2.5. 

Inflating habitats are under development for an orbit use, during the passage 

between planets and on planetary surfaces. The inflating buildings in the shape of 

torus or dome are proposed in the Martian colony project. The first of these inflating 

space habitats, called TransHab, was proposed for the International Space Station (by 

NASA). Nowadays, inflating structures are scalable and reconfigurable to fit a wide 

range of applications from small gun-launched munitions to large high altitude long 

endurance (HALE) aircraft. Due to the unique requirements for flight such as high 

aspect ratio and unconventional airfoil profiles due to the low density and high 

aerodynamic efficiency, this places significant constraints on inflating wing designs 

for use in such vehicles. 
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Figure 2.2 30 meter ECHO I Balloon Satellite [2] 

  

Figure 2.3 ARISE inflating telescope [2] 

  

Figure 2.4 Inflating lunar habitat proposal [2] 
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Figure 2.5 Inflating aircraft [2] 

2.2.2 Civil engineering and architecture 

The first pneumatic building proposal is attributed to Frederick William 

Lanchester, an English engineer, who patented a design for a field hospital in 1917. 

This fabric tent without poles or conventional structure was to be supported by low 

air pressure and entered by means of air locks. In 1942, prompted by the demands of 

the War Production Board (USA), many inflating buildings have been produced. In 

the recent decades inflating shelters arc used by the assisting authorities in case of 

major accidents such as emergency shelters after natural disasters Figure 2.6a, 

decontamination regions, tents for Red Cross Figure 2.6c, Police, Civil Defence and 

Military (as storage hangars for airplanes or vehicles) etc. Many inflating churches 

Figure 2.6b, mosques, synagogue etc. have also constructed nowadays. This 

technology has reduced the transportable weight of a tent by 66%, the transportable 

volume by 75% and the setup time by 50% and it is a point that the payload and the 

optimum shape for a specific application become the central preoccupation for 

designers. Likewise, many membrane inflating structures have been constructed in 

the civil Engineering field: the roof of inflating stadiums such as the Carrier dome 

(USA) in 1980 .7a, the BC Place stadium (Canada) in 1983 .7b the dome Tokyo 

(Japan) in 1988 .7c, etc. 
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Figure 2.6 Inflating structures in Civil Engineering and Architecture [1] 

 

Figure 2.7 Inflating stadiums [1] 

2.2.3 Other fields of application 

In addition to the fields referred above, the inflating structures find their 

applications in many other fields such as: Marine and submarine applications, 

farming field, etc. The popularity of inflating structures is due to the fact that they are 

very efficient light weight structures. Thus a thorough understanding of the stability 

behavior of this type of structures is a must for all those who employ them. 

Unfortunately, very little relevant references have been found on buckling of inflating 

structures made of plain woven composites. Moreover, based on the review on 

literature, it could be observed that constructing an effective analysis model for 

inflating structures is essential. 

2.3 Analyses of inflating structures 

2.3.1 Analytical approach 

The studies on behaviour of inflating structures have bees widely conducted 

by various researchers by using the analytical approach. Some authors have also 

applied Euler Bernoulli’s kinematics to modelling the inflating beams. For example, 

load deflection theory was derived Comer, R. L., & Levy, S. [3] for an inflating 

isotropic beam. After that, Comer and Levy’s work was extended by   Webber, J.P.H. 

[4] to predict distructing loads in cantilever beams that was inflating. Also, Main et 

al. [5] did experiments on a cantilever isotropic beam and then Comer’s theory was 
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improved typically. Continuously, Suhey et al. [6] considered a tube pressurized 

under uniformly distributed loads. By the means of the Euler-Bernoulli’s kinematics, 

material of beams was supposed to be isotropic and their results was obtained 

theoreticaly for deflection. The Timoshenko’s kinematics is determined by some 

other authors have that it is the best adapted theory for structures as pressure load 

does not appear in solution of deflection, which is mentioned in the Euler Bernoulli’s 

kinematics situation. For instance, a seri of nonlinear equations was derived by 

Fichter [7] for the bending and twisting of inflating cylindrical beams. This derivation 

was based on three following significant assumptions: cross section of the inflating 

beam, which is the first issue, remains undeformed under the applied loading; 

secondly, the cross-sectional translation and rotations are small; and the negligible 

characteristic of circumferential strain is the third assumption. He used the 

Timoshenko kinematics and energy minimization approach. A homogeneous 

isotropic fabric is supposed to apply on the beam. Later Topping, A.D. [8] and 

Douglas, W.J. [9] have investigated the structural stiffness of an inflating cylindrical 

cantilever beam that was influenced by large deformations. The finite theory of 

elasticity and the theory of small deformations have been employed to obtain explicit 

analytical results. Their analyses also account for the changes of geometry and 

material properties that occur during the inflation process. Wielgosz and Thomas [10] 

have derived analytical solutions for inflating panels and tubes by using the 

Timoshenko kinematics and by writing the equilibrium equations in the deformed 

state of the isotropic beam in order to take into account the geometrical stiffness and 

the follower force effect due to the internal pressure. They have shown that the limit 

load is proportional to the applied pressure and that the deflections are inversely 

proportional to the material properties of the fabrics and to the applied pressure. 

Wielgosz and Thomas [10] and Thomas and Wielgosz [11] have presented 

experimental, analytical and numerical results on the deflections of highly inflating 

fabric tubes submitted to bending loads. Experiments have been displayed and they 

have shown that the tube behaviour looks like that of inflating panels. Equilibrium 

equations have been once again written in the deformed state to take into account the 
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geometrical stiffness and the follower forces. Comparisons between experimental and 

analy tical results have proven the accuracy of their beam theory for solving problems 

on the deflections of highly inflating tubes. Le and Wielgosz [12] have used the 

virtual work principle in Lagrangian form and the usual Saint Venant Kirchhoff 

hypothesis with finite displacements and rotations in order to derive the nonlinear 

equations for inflating isotropic beams. The nonlinear equilibrium equations have 

been linearized around the pre-stressed reference configuration which has to be 

defined as opposed to the so-called natural state. These linearized equations have 

improved Fichter’s theory. 

Although a lot of research groups have made much efforts in developing the 

analytical methods over many years but almosts they have focused on isotropic fabric 

materials. Until now, there has a few work that focuses on the case of orthotropic 

fabric material. 

2.3.2 Numerical approach 

Nowadays, inflating beams pose significant challenges to the analysts, 

especially in cases where the analytical solutions are difficult to find in gernalized 

cases of loadings and boundary conditions. In the numerical modelling of inflating 

beams, significant prior researches have been conducted. Steeves has used the 

principle of minimum potential energy to derive a set of governing differential 

equations for lateral deformation of inflating beams. A simplifying approximation, 

assuming that the cross sections of the beam remain undeformed, has then been 

employed to reduce the dimensions to one dimension: This beam element has 

included a pressure stiffening term. Quigley et al. and Cavallaro et al. [13] have used 

the finite element approach to predict the linear load-deformation response of 

inflating fabric beams. However, the pressure stiffening term in Steeves’s element 

has treated the axial pressure resultant as an externally applied stiffening tension 

force. This formulation has predicted an unbounded increase in beam stiffness with 

increasing inflation pressure. Wielgosz and Thomas [10, 14] and Thomas and 

Wielgosz [11] have studied the load-deflection behaviour of highly inflating fabric 

tubes and panels, and have developed a specialized beam finite elementingusing 
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Timoshenko beam theory. In their approach, the force generated by the internal 

pressure has beeen treated as a follower force which has accounted for pressure 

stiffening effects. However, the element formulation did not consider the fabric 

wrinkling. Bouzidi et al. [15] have presented theoretical and numerical developments 

of finite elements for azisymmetric and cylindrical bending problems of pressurized 

isotropic membranes. The external loading has been mainly a normal pressure to the 

membrane and the developments have been made under the assumptions of follower 

forces, large displacements and finite strains. The total potential energy has been 

minimized, and the numerical solution has been obtained by using an optimization 

algorithm. Suhey et al. [6] have presented a numerical simulation and design of an 

inflating open-ocean-aquaculture cage using nonlinear finite elementinganalysis of 

isotropic membrane structures. Numerical instability caused by the tension-only 

membrane has been removed by adding an artificial shell with small stiffness. The 

finite elementing model has been compared with a modified beam theory for the 

inflating structure. A good agreement has been observed between the numerical and 

theoretical results. Le and Wielgosz [16] have discretized the nonlinear equations 

obtained in Le and Wielgosz [12] to carry out a finite element formulation for 

linearized problems of highly inflating isotropic fabric beams. Their numerical results 

obtained with the beam element have been shown to be close to their 3D isotropic 

fabric membrane finite elementingand analytical results obtained in Le and Wielgosz. 

[12]. Davids [17] and Davids and Zhang [18] have derived a Timoshenko beam finite 

elementingfor nonlinear load-deflection analysis of pressurized isotropic fabric 

beams and the numerical examination of the effect of pressure on the beam 

loaddeflection behaviour. The basis of their element formulation has been an 

incremental virtual work ezpression that has included explicitly the work done by the 

pressure. Parametric studies have been also investigated to demonstrate the 

importance of including the work done by the pressure in their models. More recently, 

Malm et al. [19] have used 3D isotropic fabric membrane finite elementing model to 

predict the beam load-deformation response. Comparison between the finite 

elementing model load-deflection responss and beam theory has shown the accuracy 
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of the conventional beam theory for modelling the isotropic fabric airbeam. Most of 

the former works, the fabric was always supposed to be isotropic. Considering the 

inflating beams made of orthotropic fabric materials, several research groups have 

been conducted,  Plaut et al. [20] have studied the effect of the snow and wind loads 

on an inflating arch in the assumption of linear thin-shell theory of Sanders. They 

have used this theory to formulate the governing equations, which include the effect 

of the initial membrane stresses. The material was assumed to have a linearly elastic, 

nonhomogeneous and orthotropic behaviour. Approzimate solutions have been 

obtained using the Rayleigh-Ritz method. Plagianakos et al. [21] have studied a low 

pressure Tensairity in order to estimate its potential towards applications including 

axial compressive loads. Compression experiments have been conducted on a simply-

supported spindle-shaped Tensairity column and displacements have been measured 

in several positions along the span, whereas axial forces have been experimentally 

determined by strain gauges measurements. Comparisons has been made between 

experimental results, finite elementingand analytical predictions they have already 

developed, and a good agreement has been found. Moreover, Nguyen et al. [22] 

studied an analytical approach to approximate the critical load for an HOWF 3D 

Timoshenko. Regarding the buckling behavior, the model of proposed inflatable 

beam proved a prosperity adjustment with the previous models in literature. The total 

Lagrangian form of Timoshenko kinematics and virtual work principles were applied 

to formulate the beam’s governing equations. 

Overall, it is seen that a great number of studies have been conducted recently 

to development of numerical model to the infalting beam structures, the study on the 

influence of orthotropic fabric on the structural behaviour has not been handled yet. 

Moreover, all previous studies only developed based on traditional finite element 

approach, which could be not suitable for infalting structures with curve geometries 

and those require high-order continuity of interpoaltion functions. 

The IGA approach was firstly introduced by Hughes in [23]. Since then, it 

quickly becomes a hit in many fields of computational mechanics, where its 

efficiency compared to traditional Finite Element Analysis (FEA) was proven. The 
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fundamental concept of the IGA is to bridge the gap between the methods for analysis 

and conventional computer-aided design tools using NURBS basis functions. 

Therefore, the time taken from preliminary designs to analysis progress is reduced 

considerably while exact geometries of the modelled objects are preserved. The 

compelling advantages of the IGA have been proved through a large number of 

publications for plate problems. Having distinguished features, the NURBS basis 

functions are capable of providing a smooth and high continuity interpolation, which 

allows to construct the elements in a straightforward manner. Over ten years of 

development, IGA is still the topic of interest. J.A. Cottrell [24] investigated structural 

vibration, linear and nonlinear analysis of structures, shape structural optimization 

Wolfgang A. Wall [25], thin shell structures Kirchhoff-Love Kiendl [26]; Nguyen-

Thanh [27], Reissner-Mindlin shell Benson [28]; Thai [29], laminated composite 

plates based on layer-wise theory Thai [30] and rotation-free Benson [31]. There are 

research groups over the world working on IGA. In Vietnam, Professor Hung 

Nguyen-Xuan and colleagues are pioneers in this area with several publications using 

IGA for analysis of static, vibration and stability of Reissner-Mindlin plates. Thai  

[29] and Thai [30] investigated behavior of laminated composites based on higher-

order shear defomation theory and layer-wise theory in the IGA framework. Tran [32] 

and Nguyen-Xuan [33] studied FGM plates using IGA and higher-order shear theory. 

However, in the best knowledge of author, there is still lack of studies using IGA for 

inflating structures, especially stability of inflating beams and plates. 

2.4 Conclusions 

In this chater, an overview of fibous composite materials is presented. Thanks 

to its advanced mateiral properties, the fibous composite materials have been widely 

applied in various fileds in industrial and science applications. In the filed of 

structural engineering, the materials are most used for inflating structures. 

The literature review shows that the most widely used approach to analyze the 

structural responses of inflating structures is the analytical approach. However, most 

of previous reseach only forced on the isotropic materials. Only a few studies have 

been conducted for orthotropic materials. In addition, the use of numerical approach 
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to solve the problems are also limited. This is the main motivation for this research, 

which will focus on investigating the structural behaviour of composite fabric 

inflating structures in both experimental and numerical manners.
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CHAPTER 3: THEORETICAL FORMULATIONS 

 

3.1 Overview and basics of Isogeometric Analysis 

Designers have long used computers for their calculations. Initial 

developments were carried out in the 1960s within the aircraft and automotive 

industries. It’s the beginning of CAD, also known as CADD (Computer Aided Design 

and Drafting). Some of the mathematical description work on curves was developed 

in the early 1940s and the most efficient one is NURBS, can represents not only free-

form curves but also surfaces and solids in three-dimensional space, appeared in at 

the end of 1980s. Designers now generate CAD files and these must be translated into 

analysis-suitable geometries, meshed and input to large-scale finite 

elementinganalysis codes. When engineering designs are becoming increasingly 

more complex, it is obvious that engineering design and analysis could not be separate 

endeavors. Design of sophisticated engineering systems is based on a wide range of 

computational analysis and simulation methods, including structural mechanics, fluid 

dynamics, acoustics, electromagnetics, heat transfer, etc. Design and analysis 

intercommunicate each other closely. However, analysis-suitable models are not 

automatically created or readily meshed from CAD geometry. Although meshing 

process is not always appreciated in the academic analysis community, there are 

many time consuming, preparatory steps involved. 

The integration of CAD and CAA (analysis is usually referred to as CAA, 

which stands for Computer Aided Analysis) is a key for this problem. The process 

has been proven a formidable problem and seems that fundamental changes must take 

place to fully integrate engineering design and analysis. Recent trends taking place in 

engineering analysis and high-performance computing are also demanding greater 

precision and tighter integration of the overall modeling-analysis process. A finite 

elementingmesh is only admitted as an approximation of the CAD geometry. In most 

of the cases, this approximation creates errors in analytical results. Automatic 

adaptive mesh refinement has been conceived as widely adopted in industry. And it 
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is necessary to study extensively in academic literature, because mesh refinement 

requires access to the exact geometry. Hence, automatic communication with CAD 

which can represent geometry accurately is an important duty. 

An overview of NURBS theory focusing on the mathematical description of 

free-form curves is reviewed in this chapter. Most of the basics of IGA and more 

details on NURBS-based modelling can be found in the books of Piegl [34] and  [35]. 

Non-Uniform Rational B-Spline (NURBS) was developed from Bézier curves and 

surfaces which were proposed in the late 1960s and early 1970s. NURBS curves can 

represent precisely a wide range of geometry, especially conic sections. NURBS-

based geometry has great advantages in flexibility and precision, and hence nowadays 

becomes the standard for geometric modelling in computer aided design (CAD). This 

chapter starts with a short review of Bézier curves that is the antecedent of B-Spline 

geometry. B-Spline curves are then explained in details since most of the definitions 

and properties of B-Splines apply to NURBS. Finally, NURBS as a generalization of 

B-Splines is presented. 

3.1.1 Advantages of IGA in comparison with FEM 

Ther are some advantages between IGA and conventional FEM briefly 

addressed as followings: computing domain, firstly, stays preserving at any level of 

domain discretization and no matter how coarse it is. In the context of connecting 

mechanics, this leads to the simplification of connecting detection at the interface of 

two connecting surfaces, especially in the large deformation circumstance where the 

relative position of these two surfaces usually changing. Additionally, a sliding joint 

between surfaces can be reproduced precisely and accurately. This is also beneficial 

for problems that are sensitive to geometric imperfections, for example, shell 

buckling analysis, boundary layer phenomena, and fluid dynamics analysis. 

Secondly, NURBS based CAD models make the mesh generation step is done 

automatically without the need for geometry clean-up or feature removal. This can 

lead to a dramatical reduction in time consumption for meshing and clean-up steps, 

which account approximately 80% of the total analysis time of a problem Cottrell 

[36]. 
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Thirdly, the need to communicate with CAD geometry causes effortless and 

less time-consuming of mesh refinement. This advantage repulses same basis 

functions which are utilized for both modeling and analysing processes. It can be 

steadily indicated that the partition of geometry position and the mesh refinement of 

the computating domain are simplified to knot insertion algorithm, which is 

performed automatically. These partitioning segments then become new elements 

and the mesh is exact entirely. 

Finally, inter-element regularity higher with the maximum of 
1pC −
in the 

absence of repeated knots makes the naturally suitable method for mechanics 

problems. The higher-order element derivatives in formulations as Kirchhoff-Love 

shell, gradient elasticity, Cahn-Hilliard equation of phasing separation… This results 

from directly utilizating of B-spline/NURBS are based on analysing calculation. In 

contrast with FEM’s basis functions, which are defined locally in the element’s 

interior with C0 continuity across element boundaries (and thus the numerical 

approximation is C0), IGA’s basis functions are not located in one element (knot 

span). Insteadly, they are usually defined over several contiguous elements which 

guarantee a greater regularity and interconnectivity. Therefore, the approximation is 

highly continuous. Furthermore, one another benefit of this higher smoothness is the 

greater convergence rate in comparison with conventional methods, especially 

combination of a new type of refinement technique which called k-refinement. 

Nevertheless, it is worthy to mention that the larger support of basis does not lead to 

bandwidth increment in the numerical approximation and thus the bandwidth of 

resulted sparse matrix will be retained in the classical FEM’s functions. 

3.1.2 Disadvantages of IGA 

This methodology, however, presents some challenges that require special 

treatments. 

The most significant challenge of making use of B-splines/NURBS in IGA is 

that its tensor producing structure does not permit a true local refinement. Any knot 

insertion will lead to global propagation across computational domain. 
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Due to the lack of Kronecker delta property, in addition, the application of in-

homogeneous Dirichlet boundary condition or forces/physical data exchange in a 

coupled analysis are highly involved. 

Furthermore, owing to the larger support of the IGA’s basis functions, the 

resulted system of matrix is relatively denser (containing more non-zero entries) 

when it compares to the FEM and tri-diagonal banding structure as well. 

3.1.3 Bézier Curves 

The Bézier curves is a parametric polynomial curve which is defined as a 

product of the coordinate functions and control points, which are not interpolated but 

approximated, see Figure 3.1. Mathematically, a parametric Bézier curve is defined 

by the linear combination of basis functions and control points, as follows Wolfgang 

[25]. 

( ) ( ),

1

n

i p i

i

B 
=

=C P  3.1 

where n is the number of control points 1p +

 

and ( ),i pB   are the Bernstein 

polynomials of polynomial degree p. The polynomial degree is related to the number 

of control points by: 1p n= − . The Bernstein polynomials are defined by: 

( )
( )

( ) ( ),

!
1

!

i n i

i p

n
B

i n i
  

−
= −

−
 3.2 

which requires that  0,1  . 
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Figure 3.1 An example of B-spline curve 

The Bézier curves have the following disadvantages Kiendl [26]: a high degree 

is required in order to increase number of control points; with increasing polynomial 

degree, the Bézier curves are inefficient to process and the algorithms are numerically 

instable; although Bézier curves can be shaped by means of their control points, the 

control is not sufficiently local; there is no point of reduced continuity which can be 

inserted inside the curve. These problems can be overcome by using B-Splines. 

3.1.4 B-Spline 

Similar to Bézier curves, B-Spline curves are defined by a linear combination 

of controling points with basis B-Splines functions over a parametric space. The 

parametric space is divided into interval parts and the B-Splines are defined piecewise 

on these intervals with certain continuity requirements between the intervals. Since 

the number of intervals is arbitrary, the polynomial degree can be chosen 

independently out of the number of control points. Therefore, a large set of data points 

can be approximated by using low polynomial degree. The parametric space is 

defined by the so-called knot vector. 

3.1.4.1 Knot Vector 

The knot vector is a set of non-decreasing real numbers representing 

coordinates in parametric space: 
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 1 2 3 1, , ,..., n p    + + =  3.3 

where i   is the 
thi  knot, i is the knot index, 1,2,...,n p 1i = + + , p is the 

polynomial degree and n is the number of basis functions. The intervals 1 1, n p  + +
    

and  1,i i  +  are called a patch and a knot span, respectively. A B-Spline basis 

function is C
continuous inside a knot span, and 

1pC −
continuous at a single knot. A 

knot value can be repeated more than once and is then called a multiple knot. If all 

knots are equally spaced in the parametric space, the knot vector is called uniform, 

and non-uniform vice versa. A knot vector is said to be open if the first and the last 

knot have the multiplicity 1p + . In a B-Spline with an open knot vector, the first and 

the last control points are interpolated and the curve is tangential to the control 

polygon at the start and the end of the curve. 

3.1.4.2 B-Spline Basis Functions 

B-Splines basis functions ( ),i pN   of degree 0p   are defined by the Cox-deBoor 

recursive formula Thai as follows: 
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 3.5 

Important properties of B-Spline basis functions are: 

Partition of unity, i.e.

 

( ),

1

1
n

i p

i

N 
=

=  

Non-negativity, i.e. ( ), 0i pN    

Local support, i.e. ( ),i pN   is non-zero only in the interval 1,i i p  + +
    

Linear independence, i.e. ( ) ,

1

0 0
n

p

i i i j

i

N  
=

=  =  

Examples of quadratic and cubic B-Spline basis functions for open, non-

uniform knot vectors are presented in Figure 3.2.  
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Figure 3.2 (a) Examples of Quadratic B-spline basis functions 

The derivatives of the B-Spline basis functions are computed by the following 

formula Wolfgang [25]: 

( ) ( ) ( )1

, , 1 1, 1

1 1

0,..., 1
k k ki pi
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N N N with k p
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− + −
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3.1.4.3 B-Spline Curves 

A B-Spline curve of p order is defined by a tensor product of B-spline basis 

functions and control points, as follows: 

( ) ( ),

1

n

i p i

i

N 
=

=C P  3.7 

The control points , 1,2,...,d

iP i n =  are points in d-dimensional physical 

space d , and construct the control polygon. In Figure 3.3 a quadratic B-Spline 

curve with open knot vector is given. As can be seen, the first and last control point 

are interpolated and the curve is tangential to the control polygon at its start and end. 

The derivative of a B-Spline curve is also a B-spline curve which is computed by the 

following formula T.J.R. Hughes [23]: 
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Some important characteritics of B-spline curves are: 
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• Convex hull property: the inside curve contained in the convex hull of 

controling polygon. 

• The controling points are generally not interpolated. 

• The controling points influences on maximum 1p +  sections. 

• For open knot vectors, the first and last controling point are interpolated. 

The curve is tangential to the controling polygon at the beginning and the end of the 

curve. The C


 continuous curve between two knots and continuous 
p kC −

 at one knot 

having multiplicity k. 

• Affine transforming of the B-Spline curve are performed correspondingly 

by transforming the controling points. 

• A Bézier curve is also a B-Spline curve but with only one interval knot. 

 

Figure 3.3 B-Spline, piecewise quadratic curve in 
2

and corresponding control 

polygon 

3.1.5 NURBS Curves 

NURBS is abbreviation for Non-Uniform Rational B-Splines. In term of non-

uniform, it refers to knot vector which is generally unchanged. Other term named 

rational term shall refer to the basis functions. For B-Splines, the basis functions are 

known as incoherent polynomials. For NURBS they are piecewise rational 

polynomials. A rational B-Spline curve in d  is the projection onto d-dimensional 
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physical space of a non-rational (polynomial) B-spline curve defined in 1d + -

dimensional homogeneous coordinate space. In three-dimensional Euclidean space, 

the control points  ( )
( )

( )

,

,

,

1

i p i

i p n

i p i

i

N w
R

N w





=

=


. 

Then homogeneous four-dimensional control points are written as Kiendl [26]: 

   , , , , , , , 0,w wx wy wz w X Y Z W w= = P  3.10 

and the non-rational B-Spline curve is obtained as follows: 

( ) ( ),

1

n
w w

i p i

i

N 
=

=C P  3.11 

Projecting back into three-dimensional space by using a mapping, denoted by 

Kiendl [26].   
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the rational B-Spline curve is yielded as: 
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Defining NURBS basis functions as: 
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3.14 

one can write a NURBS curve in the common way as the sum of control points times 

the respective basis functions: 

( ) ( ),

1

n

i p i

i

R 
=

=C P  3.15 

If all controling weights are equal, the rational formula in Eq. 3.14 scale down 

to the normal B-Spline functions. It means that this B-Spline is a particular case of 

NURBS with equilibrium controling weights, and all properties of B-Splines listed in 
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Section 3.1.4.3 apply to NURBS as well. The significant superiority of the basis 

rational functions is that they allow an exact shape of conic sections, including circle 

and ellipse curves. Figure 3.4 shows a NURBS curve through an ellipse form. 

Therefore, the NURBS are able to draw smooth shapes, linear forms, sharp edges, as 

well as supreme geometric objects like spheres, cylinders, or ovals, etc. These 

informations explain why NURBS application can establish a standard rule sin CAD 

modelling. 

 

Figure 3.4 Exact ellipse represented by a NURBS curve 

3.1.6 NURBS Refinement 

There are two basic techniques for increasing the flexibility of a NURBS-

based geoemtry, namely knot insertion and degree elevation or order elevation. 

In knot insertion, the knot spans are divided into smaller ones by inserting new 

knots in order to enrich the basis functions. Knots may be inserted without changing 

a curve geometrically or parametrically. As a consequence, at this point the continuity 

is reduced by one. For each additional knot, an additional control point is inserted. 
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Figure 3.5 Successive insertion of the knot 
1

3
 = : (a) original geometry and (d) 

basic functions, (b)-(c) refined geometries and (e)-(f) corresponding basic funtions. 

Related to elevation, the number of knot intervals remains same level but there 

is an increasing at polynomial degree of the basis functions. While the degree is 

grown, existing knots are repeated so that the continuity at these points sets at the 

same position. Focused on surfaces, refinementing procedures can be applied 

independently to both parametric directions   and  . With knot insertion, a very 

important feature of the elevation is that it does not change either the geometry or the 

numerals. 
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Figure 3.6 Successive degree elevation of the a quadratic rational curve: (a) original 

geometry and (d) basic functions, (b)-(c) degree elevated geometries and (e)-(f) 

basic function 

There are standard algorithms about knot inserting and ordering elevation B-

Splines, kindly refer Cottrell et al. [24]. With NURBS, the similar algorithms is able 

to utilize, however, it is necessary to put in an application the homogeneous control 

coordinates
W

iP , which means B-Spline is refined in the projective 4 space. After 

obtaining the refinedly controling points in projective space, they are extrapolatedly 

back to the 3 space. 

3.1.7 Continuity 

For demonstrated isogeometric analysis, the continuity between elements and 

patches plays a crucial role in the following chapter. Therefore, this section shall 

mention about investigating conditions in continuity for B-Splines and NURBS. 

About parametric curves and surfaces, there are two kinds of continuity which 

are the geometric and the parametric continuity. For the zeroth-order continuity, it 

equals as shown in the expression 
0 0G C= . However, for a continuity degree 1k   

they needs to be distinguished. Generally, the parametric continuity 
kC  implies the 

geometric continuity 
kG  but not vice versa. For the proposed method, the geometric 
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continuity 
1G  between surfaces is needed, so at first difference between 

1G  and 
1C  

shall be briefly discussed. 

Given are two curves ( )1C   and ( )2 ,0 1,C     which join at their ends: 

( ) ( )1 21 0C C=  3.16 

the curves are 
1C continuous if their first derivatives at the joint are equal: 

( ) ( )1 21 0C C

 

 
=

 
 3.17 

This means that their tangent vectors at the joint are parallel and have the same 

magnitude. For 
1G  continuity, the tangent vectors only have to be parallel but not 

necessarily of the same magnitude  Veldman [2]. So for 
1G  the following equation 

must hold: 

( ) ( )1 21 0
.

C C
c

 

 
=

 
 3.18 

where c is a scalar multiplier. 

For a B-Spline curve, the first derivatives at the endpoints of a B-Spline curve 

are given by Eq. 3.8. It is noted that the derivatives of NURBS are also conducted in 

a similar manner. 
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The factors 
2p

p

 +

 and 
1 n

p

−
 are scalar multipliers of the tangent vectors and 

therefore irrelevant for the geometric continuity. The last control point of the first 

curve is equal to the first control point of the second curve, 
1 2

1 ,nC C=  so the curves 

are 
1G  continuous as illustrated in Figure 3.9 if the following condition holds: 
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( ) ( )2 1 1 1

2 1.n n nC C c C C −− = −  3.21 

 

Figure 3.7  1G  - continuous B-Spline curves 

 

Figure 3.8 
0G - continuous B-Spline curves 

 

Figure 3.9 Discontinuous B-Spline curves 
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3.1.8 Isogeometric Analysis 

The term isogeometric analysis was proposed by T.J.R. Hughes [37] and 

means that the analysis model uses the same mathematical description as the 

geometry model. It is an enhancement to isoparametric analysis. The isoparametric 

concept states that the same functions are used to describe the initial geometry and 

the unknown solution field, e.g displacements Zhang [38]. It is noted that in this 

context, initial geometry refers to the initial geometry of the analysis model. The 

isoparametric concept is an important prerequisite for the correct treatment of rigid 

body motions. In traditional finite elementinganalysis, low order, mostly linear, 

Lagrange polynomials are used as basis functions for the analysis, whereas computer 

aided geometry modeling is based on techniques like spline-functions and 

subdivision surfaces. As a consequence, a model conversion is necessary if a 

geometry designed in a CAD program is to be analyzed by FEA. For analysis, the 

geometry is converted into a mesh of finite elements, which is why this process is 

called meshing. This model conversion causes a series of problems. The most obvious 

problem is that due to the model conversion, geometric information is lost. 

The finite element geometry is only an approximation to the original geometry 

and the quality of this approximation depends on the mesh density. However, an exact 

description of the geometry is crucial if small geometric imperfections can decide 

about the overall structural behavior, like in buckling of thin shells. 

The second aspect is the time impact of meshing, which is a serious problem 

in industrial applications, especially since the whole process has to be redone every 

time a mesh needs to be refined or modified. The isogeometric analysis has shown 

many great advantages on solving many different problems in a wide range of 

research areas such as fluid-structure interaction Veldman [2], Kiendl [26], Nguyen-

Thanh [27], shells T.J.R. Hughes [37], structural analysis J.A. Cottrell [24], Benson 

[28], Thai [29], fracture mechanics Cottrell [39] and so on. 

The core idea of isogeometric analysis is that the functions used for the 

geometry description in CAD are adopted by the analysis for the geometry and the 

solution field. By this, the whole process of meshing can be omitted and the two 
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models for design and analysis merge into one. The schematic illustration of NURBS 

paraphernalia is illustrated in Figure 3.10. 

 

Figure 3.10 Schematic illustration of NURBS paraphernalia for a one-patch surface 

model. (Hughes et al [23]) 
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Figure 3.11 Summary of IGA procedure  

3.1.9 NURBS-based elements for IGA  

Similar to the traditional finite element analysis, the isogeometric analysis 

works with elements. For using NURBS-based isogeometric analysis, the NURBS 

elements are defined by non-zero knot spans of the knot vectors. This means that the 

domain consists of a couple of NURBS patches and each patch is a subdomain that 

is divided into elements by the knot vectors. In the following, more detailed 

 8. Estimate errors or present the obtained results 

by graphs or contour plots. 
Post-processing 

 

3. Compute basic functions and their associated 

derivatives. 

Processing 5. Assemble the elemental entities to global ones. 

6. Enforce boundary and initial conditions. 

7. Solve the system of equations. 

4. Evaluate the elemental matrices and force 

vectors. 

 

1. Import NURBS geometry from CAD or build 

B-spline/NURBS model from scratch. 

2. Generate connectivities arrays that relate the 

local and global entities. 

Pre-processing 
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information of isogeometric NURBS- elements are presented, as well as their 

consequences for analysis and the differences to classical finite elementinganalysis. 

 

Figure 3.12 Isogeometric NURBS-elements in parametric space (Hughes et al [23]) 

A NURBS patch is defined over a parametric domain, which is divided into intervals 

by non-zero knot spans. These intervals are defined as elements. An example of 

NURBS elements is illustrated in Figure 3.11. The reason for this definition is that 

inside a knot interval, B-Spline basis functions are polynomials and therefore Gauss 

quadrature can be used for integration on element level. NURBS basis functions are 

not polynomials but rational polynomials. Therefore, the integration with Gauss 

quadrature is only approximative for NURBS basis functions. However, the use of 

Gauss quadrature for NURBS elements has been investigated and proven as reliable 

in the literature Chawla [1] and Wolfgang [25] as well as in the benchmark examples 

in this thesis (for the examples presented in this thesis, Gauss integration has been 

used). An efficient quadrature for NURBS-based isogeometric analysis that makes 

use of the higher continuities between elements, and therefore is more efficient than 

Gauss quadrature, is developed by Hughes [40]. 

Equivalent to finite elements, a NURBS element is defined by a set of nodes 

and corresponding basis functions. The nodes are the NURBS control points which 

carry the degrees of freedom for the analysis and boundary conditions are applied to 

them. Since the element formulation in this thesis is displacement-based, the degrees 

of freedom are the displacements of the control points. For two-dimensional 

structures this means that every control point has three degrees of freedom, namely 

the displacements in x- and y- direction. It is important to note that with this definition 
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of elements, the basis functions are not confined to one element but extend over a 

series of elements, as illustrated in Figure 3.11. This is a very important difference 

to classical finite elements because it allows higher continuities of shape functions 

over the element boundaries. 

As in the p-version of the finite elementingmethod Pilkey [41], the high-order 

nature of the basis functions generally results in higher accuracy compared to low-

order elements. In contrast to p-version elements, NURBS-elements also have high-

order continuities between elements, which is the basis for the element formulation 

presented in the next chapter. On the other hand, it means that the elements are 

interconnected and not independent of each other. The basis functions inside a knot 

span are defined by the Cox-deBoor recursion formula and depend on the neighboring 

knot spans, see Eq. 3.4. Therefore, it is not possible to define a single NURBS 

element without a complete NURBS patch. In this context, it is worth discussing the 

term elements since they are not independent, elementary parts that can be assembled 

arbitrarily to form a bigger model. 

In the implementation persepctive, these elements can be treated exactly in the 

same way as classical finite elements. The stiffness matrix, for example, is evaluated 

on element level and assembled to the global stiffness matrix. The only difference is 

the use of different shape functions. The fact that the corresponding nodes, i.e. control 

points, usually lie outside the element, is solely a consequence of the used basis 

functions and does not make any difference in the treatment of these elements in a 

finite element code. Many locking phenomena in structural analysis are a 

consequence of the low-order basis functions that cannot correctly represent the 

physical behavior Bezier [42] and Hughes [23]. Since NURBS are higher order 

functions, these locking effects can be avoided efficiently. 

The following important properties of NURBS as basis for analysis are 

summarized: 

• The basis functions fulfill the requirements of linear independence and 

partition of unity. They have a local support, depending on the polynomial degree. 

• Basis functions have higher-order continuities over element boundaries. 
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• Degrees of freedom are defined on the control points. 

• The isoparametric concept is used. 

• Rigid body motions are treated correctly (zero strains) due to the affine 

covariance property of NURBS. 

• Locking effects stemming from low-order basis functions can be precluded 

efficiently. 

3.1.10 Isogeometric Analysis versus Classical Finite elementingAnalysis 

The use of NURBS basis for geometric modelling and analysis is the 

significant difference of isogeometric analysis versus standard finite 

elementingmethod. Isogeometric analysis employs NURBS basis functions to 

construct exact geometry at all levels of discretization, while the classical families of 

interpolatory polynomial as Lagrange polynomials or Hermite polynomials are 

widely utilized in typical finite elementinganalysis. 

Major differences are listed in Table 3.1. On the other hand, isogeometric 

analysis and classical finite elementingshare many common features. For instance, 

they are both isoparametric implementations of Galerkins method, accordingly, 

isogeometric analysis inherites the computing implementation of finite 

elementingprocedure. Others are given in  

Table 3.2. 

Table 3.1 NURBS based isogeometric analysis versus classical finite element 

analysis. (Wolfgang [25]) 

Isogeometric analysis Classical finite elementing 

analysis 

- Exact geometry - Approximate geometry 

- Control points - Nodal points 

- Control variables - Nodal variables 

- Basis does not interpolate control 

points and variables 

- Basis interpolates nodal points 

and variables 

- NURBS basis - Polynomial basis 
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- High, easily controlled continuity - 
0C -continuity, always fixed 

- hpk-refinement space - hp-refinement space 

- Pointwise positive basis - Basis not necessarily positive 

- Convex hull property - No convex hull property 

- Variation diminishing in the 

presence of discontinuous data 

- Oscillatory in the presence of 

discontinuous data 

 

Table 3.2 Common features shared by isogeometric analysis and classical finite 

element analysis. (Wolfgang [25]) 

Isoparametric concept 

Galerkins method 

Code architecture 

Compactly supported basis 

Bandwidth of matrix 

Partition of unity 

Affine covariance 

Patch tests are satisfied 

 

3.2 Cotinuum-based governign equations of stability problems of 

inlfating beams 

A large number of analytical analyses related to the inflating beams and arches 

are available in literature, concerning both theoretical and experimental analysis. One 

important aspect is need to build the best adapted analytical modeling for beam 

structures. Euler-Bernoulli kinematics and the Timoshenko kinematics are widely 

used to gain the analytical solutions and to develop the formulations for inflating 

beams made of woven fabrics. Comer [3] derived a load deflection theory in the case 

of isotropic beams. Main [43] and Main [5] proposed a method for analyzing the 

inflating fabric beams with a model analogous to the shear-moment method and 

developed the theory considering orthotropic membrane model. Fichter [7] 

Analytical buckling analysisconstructed Timoshenko cylindrical inflating beams 
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made of elastic isotropic textile fabric based on energy minimization approach. 

Effects of air pressures to the load carrying capacity of the beam were taken into 

account. 

In general, the beam theoretical model is developed based on the Assumptions 

are made as follows: (i) the cross section of the inflating beam remains undeformed 

under applied load, (ii) the cross section translation and rotations are small, (iii) the 

circumferential strain is negligible. Wielgosz [10] presented analytical solutions for 

inflating plates and tubes based on Timoshenko kinematics. The work took into 

account the geometric stiffness and the residual force effect due to the internal 

pressure. They indicated that the limit load is proportional to the applied pressure and 

that deflections are inversely proportional to the material properties of the fabrics and 

to the applied pressures. In order to improve Fichter’s theory, Wielgosz [44] proposed 

a new formulation using the virtual work principle in Lagrangian form and Kirchhoff 

hypothesis with finite displacement and rotation to derive nonlinear equations of 

inflating beams. Davids [17] and Davids [18] presented nonlinear load-deflection 

response of Timoshenko inflating beams. Parametric studies have been also 

investigated in their work. Malm [19] used 3D isotropic fabric membrane finite 

element model to predict the beam load-deformation response. 

In this chapter, theoretical formualtions developed by Nguyen and his 

coleagues ([22], [52] and [130]) are employed for the buckling problems of inflating 

composite beams is presented. The obtained governing equations are then discretized 

in accordance to IGA manner in the next chapter to find the numerical solutions of 

the buckling problems. It is noted that in the previous work of Nguyen ([22] and [52]), 

the author used traditional finite element approach to solve the problem. 

3.2.1 Mathematical description of inflating beams 

In this study, we focused our work on the Timoshenko beams made from 

orthotropic material. For inflating structures, the load is applied in two stages: First, 

the beam is inflating to the pressure p, and other external forces are applied. At the 

beginning of the first step, the internal pressure is zero and the beam is in its natural 

state Figure 3.13a. The reference configuration corresponds to the end of the first 
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stage Figure 3.13b. The Green-Lagrange strain measure is used due to the 

geometrical nonlinearities. 

 

Figure 3.13 HOWF inflating beam: (a) in natural state and (b) in the reference 

configuration (inflating state) 

Figure 3.13 shows an inflating cylindrical beam made of an HOWF. 

0 0 0 0, , ,l R t A
 
and 0I represent respectively the length, the external radius, the fabric 

thickness, the cross-section and the second moment of inertia around the principal 

axes of inertia Y and Z of the beam in the reference configuration which is the 

inflating configuration. 0A  and 0I  are given by 

0 0 02A R t=  3.22 

2

0 0
0

2

A R
I =  3.23 

where the reference dimensions 0 0,l R
 
and 0t depend on the inflation pressure 

and the mechanical properties of the fabric Apedo [45]: 

( )0 1 2
2

lt

t

pR l
l l v

E t

 





= + −  3.24 
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( )
2

0 2
2

lt

t

pR
R R v

E t







= + −  3.25 

0

3

2
lt

t

pR
t t v

E



= +  3.26 

in which ,l R   and t  are respectively the length, the fabric thickness, and the 

external radius of the beam in the natural state. 

The internal pressure p is assumed to remain constant, which simplifies the 

analysis and is consistent with the experimental observations and the prior studies on 

inflating fabric beams and arches. The initial pressurization takes place prior to the 

application of concentrated and distributed external loads, and is not included in the 

structural analysis per se. 

The slenderness ratio is s

L



=  where 0L l=  is the beam length and 

0

0

I

A
 =  is the beam radius of gyration. The coefficient   takes different values 

according to the boundary conditions of the beam. 

M is a point on the current cross-section and 0G  the centroid of the current 

cross-section lies on the X - axis. The beam is undergoing axial loading. Two Fichter’s 

simplifying assumptions are applied in the following: 

- The cross-section of the inflating beam under consideration is assumed to 

be circular and maintains its shape after deformation, so that there are no distortion 

and local buckling; 

- The rotations around the principal inertia axes of the beam are small and the 

rotation around the beam axis is negligible. 

3.2.2 Theoretical formulation 

3.2.2.1 Kinematic relations 

The material is assumed orthotropic and the warp direction of the fabric is 

assumed to coincide with the beam axis; thus the weft yarn is circumferential. The 

model can be adapted to the case where the axes are in other directions. In this case, 
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an additional rotation may be operated to relate the orthotropic directions and the 

beam axes. This general case is not addressed here because, for an industrial purpose, 

the orthotropic principal directions coincide with the longitudinal and circumferential 

directions of the cylinder. 

With the hypotheses proposed by Fichter were applied, the displacement filed 

of an arbitrary point M(X, Y, Z) are expressed as follows: 

( )

( )

( )

( )

( ) ( )
0 0

0 0

X Y Z

Y

Z

u u X Z X Y

X

X

M u

u w X

v

     −  
       

= = + +       
       
       

u  3.27 

Where ,X Yu u  and Zu  are the components of the displacement at the arbitrary 

point M, whilst ( ) ( ),u X v X  and ( )w X  correspond to the displacements of the 

centroid 0G  of the current cross-section at abscissa X, related to the base (X, Y, Z); 

( )Y X  and ( )Z X  are the rotations of the current section at abscissa X around both 

principal axes of inertia of the beam, respectively. Let  u  denote an arbitrary virtual 

displacement from the current position of the material point M: 

( )

( )

( )

( ) ( )
0 0

0 0

Y Zu X Z X Y X

v X

w X

  

 



    − 
     

= + +     
     
     

u  3.28 

The definition of the strain at an arbitrary point as a function of the 

displacements is: 

l nl
= +E E E  3.29 

Where tE  and nlE  are respectively the Green-Lagrange linear and nonlinear 

strains. The nonlinear term nlE  takes into account the geometrical nonlinearities. The 

strain fields depend on the displacement fields as following: 
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, ,

, ,

, ,

, , , ,

, , , ,

, , , ,

1

2

1

2

1

2
,

1 1

2 2

1 1

2 2

1 1

2 2

TX
X X

TY
Y Y

TZ
Z Z

l nl
T TX Y
X Y Y X

T TX Z
X Z Z X

T TY Z
Y Z Z Y

u

X

u

Y

u

Z

u u

Y X

u u

Z X

u u

Z Y

   
   
   

   
   
   
   
   

= =   
   + +

   
   
   ++
   

   
++  

  

u u

u u

u u

E E

u u u u

u u u u

u u u u










 3.30 

The higher-order nonlinear terms are the product of the vectors that are defined 

as follows 

, , ,

, , ,, , ,

, , ,

, ,

X X X Y X Z

X Y ZY X Y Y Y Z

Z X Z Y Z Z

u u u

u u u

u u u

     
     

= = =     
     
     

u u u  3.31 

3.2.2.2 Constitutive equations 

In this study, the Saint Venant-Kirchhoff orthotropic material is employed. 

The energy function ( )E = E  related to this case is known as the Helmholtz free-

energy function. 

To describe the behavior of the inflating beam, we define two coordinate 

systems: A local warp and weft direction coordinate system related to each point of 

the membrane coincident with the principal directions of the fabric Figure 3.14a. 

And the other is the Cartesian coordinate system attached to the beam Figure 3.14b. 

The components of the second Piola-Kirchhoff tensor S  are given by the 

nonlinear Hookean stress-strain relationships 

.
o o

= + = +


S S S C E
E

 3.32 
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Figure 3.14 (a) Fabric local coordinate system, (b) Beam Cartesian coordinate 

system 

where 

- 
o

S  is the inflation pressure prestressing tensor. 

- the second Piola-Kirchhoff tensor is written in the beam coordinate system 

as 

XX XY XZ

YY YZ

ZZ

S S S

S S

symmetrical S

 
 

=
 
  

S  3.33 

- C  is the fourth-order elasticity tensor expressed in the beam axes. 

In general, the inflation pressure prestressing tensor is assumed spheric and 

isotropic Wielgosz [44]. So, 

o oS=S I  3.34 

Where I  is the identity second order tensor and o o

o

N
S

A
=  is the prestressing 

scalar. The elasticity tensor expressed in the beam axes can be calculated from the 

local orthotropic elasticity tensor using the rotation matrix R (see Apedo [45]): 

loc

ijkl im jn kp lq mnpqC R R R R C=  3.35 

With i, j, k, m, n, p, q = 1, …, 3, where 

1 0 0

0 cos sin

0 sin cos

 

 

 
 

= −
 
  

R  3.36 

and 
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11 12

12 22

66

0

0

0 0

loc

C C

C C

C

 
 

=
 
  

C  3.37 

The elasticity tensor in the beam axes then obtained as 

2 2

11 12 12 12

4 2 2 3

22 22 22

4 3

22 22

2 2

22

2

66 66

2

66

0 0

0 0

0 0

0 0

C c C s C csC

c C c s C c sC

s C cs C

c s C

s C csC

symmetrical c C

 
 
 
 

=  
 
 
 
  

C  3.38 

Where cosc =  and sins =  with ( ),Ze n =  being the angle between the 

Z-axis and the normal of the membrane. The components of the elasticity tensor are 

given by 

 

11 12

22 66

; ;
1 1

;
1

t l tl

lt tl lt tl

t l t
lt

lt tl lt tl

E E v
C C

v v v v

E E E
C C G and

v v v v

= =
− −

= = =
−

 

3.2.3 Virtual work principle 

The balance equations of an inflating beam come from the virtual work 

principle (VWP). The VWP applied to the beam in its pressurized state is 

int ,d p

ext extW W W   = +  u  3.39 

 : f . . t. ,
o o o

o o
V V V

dV dV R dA    


 = + +   S E u u u u  3.40 

where f and t are the body forces per unit volume and the traction forces per the left-

hand-side of Eq. 3.39 is formulated from the second Piola-Kirchhoff tensor S  and 

the virtual Green strain E . 

The virtual Green strain tensor is written in the beam coordinate system as 

l nl
  = +E E E  3.41 

where 
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T
l l l l l l

XX YY ZZ YZ ZX XYl
E E E E E E       =  E  3.42 

T
nl nl nl nl nl nl

XX YY ZZ YZ ZX XYnl
E E E E E E       =  E  3.43 

with 

, , ,

, ,

,

0

0

0

l

XX X Y X Z X

l

YY

l

ZZ

l

YZ

l

XZ X Y X

l

XY X Z

E u Z Y

E

E

E

E w

E v

   







  

  

= + −

=

=

=

= +

= −

 3.44 

and 

 

( )

( )

( )

, , , , , ,

, , , , , ,

, , , ,

nl

XX X Y X Z X X X X

X X X Y X Z X Y X

X Y X Z X Z X

E u Z Y u v v

w w Z u Z Y

Y u Z Y

    

   
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= + − +

+ + + −

− + −

 

 

( )

( ), , , ,

, ,

nl

YY Z Z

nl

ZZ Y Y

nl

YZ Z Y Y Z

nl

XZ Y X X Y X Z X Y

Y Y X Y Z X

E

E

E

E u u Z Y

Z Y

  

  

    

     

   

=

=

= +

= + + −

+ −

 

( )
, ,

, , , ,

nl

XY Z X Z Y X

X Y X Z X Z Z Z X

E u Z

s u Z Y Y

    

    

= − −

− + − +
 3.45 

The generalized resultant forces and moments, and the quantities ( )1,...,10iQ i =  

acting over the reference cross-section oA  can be related to the stresses in the beam 

by 
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,
o
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oz XZ
A

y XX
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M ZS
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   
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  3.46 

2

2

, 1,...,10
o

XX
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XY

XZ
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i o
A

XY

XZ
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YZ

YZS

Z S
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− 
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 
 
  

= = 
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 −
 
 
 
 
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  3.47 

where, N corresponds to the axial force, yT  and zT  to the shear force in Y and Z 

directions respectively, yM  and zM  to the bending moments about the Y and Z-

axis. Quantities iQ  depend on the initial geometry of the cross-section: 

( )
0

0 2 2 2

11 , , , ,

1

2
XX X X X X

A

N S dA N C u u v w
  

= = + + + +  
 

  

( ) ( )2 2 2 2

12 0 11 0 , ,

1 1

4 2
Y Z Y Z Z XC A C I   


+ + + +


 

3.48 

( )
0

0 66 , ,

1
1

2
y XY y X Z X

A

T S dA k A C v u = = − +   3.49 

( )
0

0 66 , ,

1
1

2
z XZ z X Y X

A

T S dA k A C w u = = − +   3.50 

( )
0

, 11 , 01y XX X Y X

A

M ZS dA u C I= = +  3.51 

( )
0

, 11 , 01z XX X Z X

A

M YS dA u C I= − = +  3.52 
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and 
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0

2

1 0 11 0 , , 12

1

4
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A
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0

10 22 0 12 0 , ,

1 1

8 4
YZ Y Z Y X Z X

A

Q S dA C A C I   = − = −  3.62 

Then the internal virtual work may be written as: 
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With the terms ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1, , , , ,A X B X C X D X E X F X  and ( )1H X : 
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The external virtual work extW  is due to the dead loads and to the pressure 

load. 

The dead loads, which may include concentrated loads and moments as well 

as distributed loads, act like the body forces. The inflation pressure plays a role of a 

traction force acting on the cylindrical surface and on both ends. The first term on the 

right side of Eq. 3.40 can be rewritten as 

( )
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In which xf , yf  and zf  are respectively the distributed loads along the X, Y, 

and Z axes, while ( )aF b , and ( )aM b  (With 1, , ; ,..., na X Y Z b X X= = ) are the 

external support reactions and the external loads and moments. 

The second term on the right side of Eq. 3.40 is the external virtual work due 

to the inflation pressure. This virtual work includes the pressure virtual work on the 

cylindrical surface 
p

cylW  and on both ends 
p

endW , Figure 3.15 shows a reference 

cylindrical inflating beam with an applied uniform pressure p acting on the cylindrical 

surface A which has a pointwise normal n  in the current configuration. The traction 

force vector t in Eq. 3.40 is therefore pn  and the virtual work due to the inflation 

pressure 
p

extW  is then given by 

.p p p

ext cyl end
A

W W W p dA   = + =  n u  3.72 

 

Figure 3.15 Uniform pressure on the cylindrical surface (Nguyen [52])  

To determine the pressure virtual work 
p

cylW , the curvilinear coordinates 

( ),   are used Figure 3.16: 

oR

X

 



=


=
 3.73 

where   is the polar angle between the normal n  at a current position x  and 

the Ye . The coordinates of a material point oM  are given by 
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cos
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o

X

OM R

R





= =X  3.74 

The position vector at the current configuration is then given by 
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By using an arbitrary parameterization of the surface as shown in Figure 3.15, 

the 

 

Figure 3.16 Definition of the curvilinear coordinate system 

normal and area elements can be obtained in terms of the tangent vectors 
x






 

and 
x






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and 

o

o

x x
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 3.77 
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Then 
p

cylW  is: 

.p

cyl
A

x x
W p d d   

 

  
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 u  3.78 
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The pressure virtual work at the ends of the beam can be determined in the 

same way: the reference circular end surfaces ( 0X =  and oX l= ) can be represented 

by the curvilinear coordinates ( ) ( ), ,r r  =  Figure 3.17. Then, 

( ) ( ). . 0p

end o
A A

W p l dA p dA  = − n u n u  3.80 
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 3.81 

 

Figure 3.17 Definition of the curvilinear basis at the beam ends. 

From Eq. 3.78 and Eq. 3.80 p

extW  is given by 
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where 
2

p oF p R=   is the pressure force due to the inflation pressure. 

One can note that, according to Eq. 3.82, the follower force effect of the 

external load due to the inflation pressure depends on the displacements and the 

rotations. 

3.3 Conclusion 

In this chapter, the fundamental concepts of IGA and its general 

implementation as an alternaltive finite element approach are instroduced. In 

addition, an analytical approach is presented to develop the governing equations of 

the inflating beams based on HOWF 3D Timoshenko theory.  

For the IGA, some prominent features of the approach are summarized as 

follows: 

1) A concept explaining the ultimate goal of eliminating the conversion from 

CAD files to CAE codes is IGA. It is accomplished by employing the same basis 

functions of CAD for analysing. 

2) B-spline basis functions from the so-called knot vector can readily be 

computed by the Cox-de Boor algorithm. Its associating derivatives can be expressed 

as linear combination of the lower order bases. 

3) B-spline curve is defined by a linear combination of basis functions and 

corresponding control points. B-spline surface and volume are defined analogously 

by taking advantage of tensor product structure of B-splines. 

4) B-splines offers three kinds of mesh refinement which are named h-

refinement, p-refinement and k-refinement. While the first two techniques are fairly 
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equivalent to element subdivision and order rising in FEA, respectively, the third one 

is exclusive to B-splines which results in higher interelement continuity. 

5) NURBS in d is defined by conic projecting B-splines in d+1, where the 

coordinates of the (d+1)th dimension are the strictly positive weights. This 

transformation has the ability to represent exact conic sections. 

6) NURBS geometry therefore is defined similarly as B-spline one. 

7) Numerical integration in NURBS-based IGA is performed via two 

successive mappings, the first one is from natural/parent space to parametric space 

and the second one is from parametric space to physical space. 

8) Since the same B-spline/NURBS curve can be represented by concatenated. 

9) Bézier curves, one can decompose the B-spline/NURBS curve into several 

C0 Bézier elements for using in the analysis. This procedure makes the IGA approach 

backward compatible with conventional FEM codes. 

In the theoretical development of stability governing equations, the total 

Lagrangian form of the virtual work principle and Timoshenko kinematics were 

employed. These equations are then discretized to develop the global buckling 

equations in the next chapter. By taking into account the orthotropic character in the 

present model, the study pointed out that only the mechanical properties El and Glt 

intervene explicitly in the solution of critical load through C11 and C66 while Et 

intervenes implicitly through the reference dimensions of the beam. Only the level of 

orthotropy of the fabric causes noticeable discrepancies in the buckling behavior of 

the inflating beam. This comes from the inequality of the mechanical properties in 

the yarn directions. The differences between the models studied also come from the 

way of the establishment of the constitutive equations. In previous studies, the 

material is assumed to be hyper-elastic isotropic and obeying the Saint Venant-

Kirchhoff law in which only SXX and SYY are considered. The Young modulus E is 

also used directly in the Hookean stress-strain relationship. In the present model, we 

consider all components of the second Piola-Kirchhoff tensor. The elasticity tensor 

with the tensor components described the mechanical properties of the orthotropic 

material is used instead of the Young modulus E. 
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CHAPTER 4: IGA-BASED BUCKLING ANALYSIS OF 

INFLATING COMPOSITE BEAMS 

 

4.1 Introduction 

The finite element analyses of inflating fabric structures are challenging on 

both material and geometric nonlinearitie, which arise due to the nonlinear load, 

deflection behavior of the fabric, stiffening pressure of the inflating fabric, fabric-

tofabric contact, and fabric wrinkling on the structural surface.  

In the literature, only the inflating tensile structures are currently addressed 

and the inflating lightweight structure are responsed to examine by service loads. 

Previous studies assumed that the beams’s materials are homogeneous isotropic and 

employed the membrane or thin shell theory determine the structural response. In 

earlier work, Libai [46] found the governing equations about incremental stress state 

in a membrane tube shaped orthotropic circular. In studying details, the membrane 

was taken to be hyperelastic and was not specified. Changing in load that includes 

uniform internal pressure and longitudinal extension are regarded as a small 

perturbation on initial homogeneous stress state. The approach about a known 

homogeneous reference state was based on the linearization of the equations. 

Functions of rectangular elements with Hermite cubic shape were used in conjunction 

with the variational principles. Wielgosz [10] and Wielgosz [14]; Thomas [11] 

implemented an inflating beam finite elementingand it was used to compute 

deflection of hyperstatic beams. The membrane of element was used as well. Then, 

Bouzidi [15] expressed two finite elements for 2D problems of inflating membranes: 

axisymmetric and cylindrical bending. The elements are built by large deflections 

hypothesis, finite strains and related pressure load. By solving directly opti-mization 

problem formulated and by the theorem of the minimum of the total potential energy, 

the numerical solution is obtained. By employing membrane elements and 

experimental results, Cavallaro [13] showed that pressurising structural tube differs 

from conventional metal fundamentally and fiber/matrix composite structures. The 
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study commands a note that the plain-woven fabric appears to be an orthotropic 

material, the fabric does not behave as a continuum. However, effective material 

properties depend on the internal pressure of the beam as a discrete assemblage of 

individual tows. Weave geometry and the contact area of interacting tows. Suhey [6] 

presented the finite elementing model of an inflating open-oceanaquaculture cage 

using membrane elements with assuming the material is anisotropic. 

Various authors used nonlinear elements to model the tension-only behavior 

of the fabric material in order to calculate the magnitudes of the deflection and the 

stress at the onset of wrinkling. The results were verified by the modified 

conventional beam theory Main [43] and Main [5]. Le van [12] and Le van [16] 

obtained the numerical results with a beam element developed from the earlier work 

of Fichter [7] and the 3D isotropic fabric membrane finite element. In their approach, 

the governing equations were discretized by the use of the virtual work principle with 

Timoshenko’s kinematics, finite rotations and small strains. The linear eigen buckling 

analysis were carried out through a mesh convergence test using the 3D membrane 

finite elementingcomputations. Fichter [7] investigated linear and nonlinear finite 

elementingsolutions in bending by discretizing nonlinear equilibrium equations 

obtained from his previous analytical model in which a homogeneous orthotropic 

fabric was considered. 

In inflating structures, with the arising of the local buckling that leads to the 

formation of the wrinkles, nonlinear problems pose the difficulty of solving the 

resulting nonlinear equations that result. Problems in these categories are geometric 

nonlinearity, in which deformation is large enough that equilibrium equations must 

be written with respect to the deformed structural geometry. Few works have dealt 

with buckling analysis of inflating structures. By means of the total Lagrangian 

formulation developed by Le van [12] and Le van [16], Diaby [47] proposed a 

numerical computation of buckles and wrinkles appearing in membrane structures. 

The bifurcation analysis is carried out without assuming any imperfections in the 

structure. In consideration of an inflating beam, Davids [18] progressed a quadratic 

Timoshenko beam element based on an incremental virtual work principle that 
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accounts for fabric wrinkling via a moment-curvature nonlinearity. However, the 

materials were assumed to be isotropic in these studies. 

In general, it is seen that the Finite element analyses of inflating fabric 

structures show a challenging in both material and geometric nonlinearities. The 

nonlinearities arise due to the nonlinear load/deflection behavior of the fabric (at low 

loads), pressure stiffening of the inflating fabric, fabric-to-fabric contact, and fabric 

wrinkling on the structural surface. In addition to check loads of fabric element, the 

finite elementing model is applied to anticipate the fundamental mode of the inflating 

fabric beam. Apedo [45] performed a theoretical analysis of inflating beams in which 

a homogeneous orthotropic fabric was considered. A 3D Timoshenko beam model 

has been developed and the nonlinear equations for the bending problem has been 

investigated by Apedo [48]. 

It can be seen that there are only a few works regarding to stability of inflating 

structures, and there is no work using the advanced numerical method, such as IGA, 

to investigate the buckling behavior of inflating composite beams. Therefore, this 

study has devoted linear and nonlinear buckling analysis of inflating beams where 

isogeometric analysis used to make orthotropic technical textiles. The method of 

analysis is based on a 3D Timoshenko beam model with a homogeneous orthotropic 

woven fabric (HOWF). The IGA-based numerical model use the quadratic NURBS-

based Timoshenko elements with C1-type continuity. The effects of geometric 

nonlinearities and the inflation pressure on the stable behavior of inflating beam with 

differently assessed boundary conditions. The influence of the beam aspect ratios on 

the buckling load coefficient are also pointed out. The obtained results are also 

compared with ones available in literature as well as experimental results. 

4.2 IGA-based formulations for the buckling problems of inflating 

composite beams 

4.2.1 Linear eigen buckling 

In linear buckling analysis situation, the beam is subjected to the inflatedly 

prestressing pressure 
0

S  tensor. The very first step is to load the inflating beam by 
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arbitrary reference level of external load,  refF  and to perform a standard linear 

analysis to determine the finite elementing stresses on the beam. It is also desired to 

have a general formula for finite elementingstress stiffness matrix  k  and finite 

elementing elastic stiffness matrix  k . The strain energy of beam per volume unit is 

T1
.

2
S E  As discuss in the previous chapter, the governing equations are derived based 

on the principle of virtual work. By integrating through the volume of the beam with 

respect to cross-sectional area oA  and the length ol , an expression for the virtual 

strain energy of a finite inflating beam is: 

( ) 
o

T
0 T

e 0 m b
V

U = dV = U + U     S E + E .C. E  4.1 

where mU  and 
bU  is membrane changing energy and the strain bending 

energy, sequently. To develop the element stiffness matrix for the beam, a 

displacement field    , , , ,Y zu u v w  =  needs to be interpolated within each element. 

For the use of element for inflating beam, it is noted that the two-noded element often 

used for Euler-Bernoulli kinematics with Hermite polynomial as shape functions 

Bhatti [49], or a higher order element such as the three-node quadratic beam with 

reduced integration Le van [16] or the three-node Timoshenko beam that has 

quadratic shape functions for transverse displacement and linear shape functions for 

bending rotation and axial displacement Davids [17]; Davids [18]. In this quadratic 

NURBS basis functions are used as interpolation functions. 

There are five degrees of freedom (DOF) associtated with an control point. 

The displacement vector is defined as {d} defines DOF vector 

   
T

j j j Yj Zju v w  =d . Then 
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N d  4.2 

where index j defines the control point j, [N] the matrix of NURBS functions, which 

are discussed in the previous chapter, and ncp is the total number of control points. 

The strain energy component mU  of the beam is associated with the stress 

stiffness matrix  k  and bU  relates to the conventional elastic stiffness  k  of the 

beam, as 

( ) 
       

o

o

T
0 T

e 0
V

T T0 T

0
V

m b

U = dV

= dV

U + U

T

S 

  

   

 

                   

=





S E + E .C. E

d I B d + d B C B d  

  T

mU   =  d k d  4.3 

   T

bU  =  d k d  4.4 

By applying the discretization procedure, the gclobal equation is obtained as follows 

   ( ) 
T

e refU    = +  d k k d  4.5 

where   is the proportionality coefficient such as refF F= , with F is the axial load. 

The two matrix coefficients  k  and 
ref

  k  are constant and dependent on the 

geometry, material properties and the inflatedly prestressing pressure conditions 

acting on the beam. The stiffness matrix are evaluated using the Gauss numerical 

integration scheme. The element stiffness matrix assembly for entire structure leads 

to the equilibrium matrix equation in global coordinates. The potential energy of the 

whole beam is simply summarizing the potential energies of the individual finite 
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elements. A whole structural matrix is generated by following the standard FEM 

assembly procedure. 

The structural equilibrium equations can be obtained by applying the principle 

of minimum potential energy. This is expressed in in the form of eigenvalue problem: 

 ( )  0i ref  + = K K D  4.6 

Eq. 4.6 is an eigenvalue problem where i  is the eigenvalue of first buckling 

mode. The smallest root cr  defines the smallest level of external load for which there 

is decomposing named: 

   crcr ref
=F F  4.7 

As the beam is loaded by an arbitrary reference level of external load  
ref

F , 

the eigenvector  D  associated with cr  is the buckling mode. The magnitude of 

 D  is indeterminate in a linear buckling problem, so that it defines a specified 

shape but not an amplitude. 

4.2.2 Nonlinear buckling 

Let us consider geometrically nonlinear behavior of HOWF inflating beam 

made of presumed linear elastic material. A nonlinear finite elementing intrinflating 

beam (NLFEIB) model is established. The total Lagrangian approach is adopted in 

which displacements refer to the initial configuration, for the description of geometric 

nonlinearity. Accordingly, we can display a tangent stiffness matrix  T ,K  which 

includes the effect of changing geometry as well as the effect of inflated pressure. 

The axial load at 
thi  is signified in following formula: 

     1i i i−= + f f f  4.8 

With a known element, the nonlinear equilibrium equation is able to be formulated 

as 

    T i =k d f  4.9 
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where  Tk  is symbol of element tangent stiffness matrix,  if  and  d  are 

typically the external load increments vector of an element and an unknown 

displacement increment needs to be solved. After all the elements are assembling in 

the model, the below equi- librium equation is shown: 

    T i =K D F  4.10 

Eq. 4.10 can be interpreted by an incremental scheme that based on the 

straightfoward Newton using nodal load increments  ,F  with load correction 

terms and updates of  TK  after each incremental step. Here, the model displacement 

vector      
1

,
i i−
= + D D D  where  D  is the unknown node displacement 

increment at increment step i and  
1i−

D  is node-beam displacement vector from the 

previous solution step. The equilibrium solution tolerance was taken as 

     ( )
1

2 0.0001
T

i i i
 =   D D D  4.11 

or 

     ( )
1

2 0.0001
T

i i i
= R R R  4.12 

with   ( )    1i T ii −= = R R D K D  being the globally unbalanced residual force 

vector from the previous increment. As a limit point is approached, displacement 

increments  D  become very large. Either at a limited point or bifurcationpoint, 

 TK  becomes singular. 

The outline of the algorithm at element level developed by Nguyen et al. [130] 

is empoyed in this study, (numerical integration procedure for calculating the element 

stiffness matrix at the jth element). The algorithm is describe as follows: 

Require: Nodal unknown displacements iD , element number jth, model 

description. 
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Ensure: Element stiffness matrix e

T
  K , element load vectors  int

e
F  and  

 e

extF  . 

Loop on 1D Gauss integration m point(s) in the ξ direction: 

for m = 1 to 3 do 

Set sampling point location ξ = ξm and associated weight factor Wm, 

Call shape function subroutine to calculate element matrix  B  and Jacobian 

operator J, all at point ξm. 

Calculate product    ( )int ext [ ] [ ]T

mW  −   B B  and add it to array e

T
  K  

Calculate element internal load factor and  e

int kT W  add it to  int

e
F   

Calculate element external load factor    ( ).d p

ext ext kT T W+  and add it to array 

 e

extF . 

end for  

The matrices concerning internal and external forces for calculating the 

tangent stiffness, respectively, are 

[Ψ𝑖𝑛𝑡] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∂𝐴1

∂𝑢,𝜉

    
∂𝐴1

∂𝑣,𝜉

    
∂𝐴1

∂𝑤,𝜉

    
∂𝐴1

∂𝜃𝑌

    
∂𝐴1

∂𝜃𝑌,𝜉

    
∂𝐴1

∂𝜃𝑍

    
∂𝐴1

∂𝜃𝑍,𝜉

∂𝐵1

∂𝑢,𝜉

    
∂𝐵1

∂𝑣,𝜉

    
∂𝐵1

∂𝑤,𝜉

    
∂𝐵1

∂𝜃𝑌

    
∂𝐵1

∂𝜃𝑌,𝜉

    
∂𝐵1

∂𝜃𝑍

    
∂𝐵1

∂𝜃𝑍,𝜉

∂𝐶1

∂𝑢,𝜉

    
∂𝐶1

∂𝑣,𝜉

    
∂𝐶1

∂𝑤,𝜉

    
∂𝐶1

∂𝜃𝑌

    
∂𝐶1

∂𝜃𝑌,𝜉

    
∂𝐶1

∂𝜃𝑍

    
∂𝐶1

∂𝜃𝑍,𝜉

∂𝐷1

∂𝑢,𝜉

    
∂𝐷1

∂𝑣,𝜉

    
∂𝐷1

∂𝑤,𝜉

    
∂𝐷1

∂𝜃𝑌

    
∂𝐷1

∂𝜃𝑌,𝜉

    
∂𝐷1

∂𝜃𝑍

    
∂𝐷1

∂𝜃𝑍,𝜉

∂𝐸1

∂𝑢,𝜉

    
∂𝐸1

∂𝑣,𝜉

    
∂𝐸1

∂𝑤,𝜉

    
∂𝐸1

∂𝜃𝑌

    
∂𝐸1

∂𝜃𝑌,𝜉

    
∂𝐸1

∂𝜃𝑍

    
∂𝐸1

∂𝜃𝑍,𝜉

∂𝐹1

∂𝑢,𝜉

    
∂𝐹1

∂𝑣,𝜉

    
∂𝐹1

∂𝑤,𝜉

    
∂𝐹1

∂𝜃𝑌

    
∂𝐹1

∂𝜃𝑌,𝜉

    
∂𝐹1

∂𝜃𝑍

    
∂𝐹1

∂𝜃𝑍,𝜉

∂𝐻1

∂𝑢,𝜉

    
∂𝐻1

∂𝑣,𝜉

    
∂𝐻1

∂𝑤,𝜉

    
∂𝐻1

∂𝜃𝑌

    
∂𝐻1

∂𝜃𝑌,𝜉

    
∂𝐻1

∂𝜃𝑍

    
∂𝐻1

∂𝜃𝑍,𝜉]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and 
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 ext 

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

p

p

p

p

F

F

F

F

 
 
 
 −
 

 = − 
 
 
 
 
 

  

The strain–displacement matrix is given by 

1,

1,

1,

1 1,

1 1,

2,5

2,5

2,5

2 2,

2 2,

3,

3,

3,

3 3,

3 3,5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0[ ]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

j

T

JN

JN

JN

N JN

N JN

JN

JN

jNB

N JN

N JN

JN

JN

JN

N JN

N JN

































= 




































  

4.2.3 Implementation of an iterative algorithm in solving nonlinear model 

In the following section, the iterative procedure using the straight forward 

Newton-Raphson iteration with adaptive load stepping for solving the nodal 

displacement incrementation solution  D  is summarized. Suppose that at 

increment ( )1i − , one obtained an approximation  1i−D  of the solution as the 

residual is not zero. 

( )    ( )    1 1 1 0i i i− − −
 = −  R D F K D D  4.13 
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At increment step i, one seeks an approximation  iD  of the solution such that: 

( )  ( )   1 0i i i−= + R D R D D  4.14 

The algorithm is obtained by using the first-order Taylor series in the vicinity of  iD  

( )  ( )     
1

1 1 0

i

i i i i

D D −

− −

=

 
+  = +  =  

R
R D D R D D

D
 4.15 

The model with linearizable and incremental iterative schemes is implemented 

using MATLAB - the numerical computing package. An iterative equation solution 

is also performed. During this structural loop, the incremental-iterative algorithm will 

be called at each material (Gaussian) point. In every loop within an incremental 

loading step ,F  the beam parameters  

Table 4.3 and the boundary conditions are prescribed, which are the input 

variables to the global level routine. The equation Eq. 4.10 gives the output results 

from the global level routine. It solved iteratively inside the structural level. In the 

elementing level sub-routine, each element are calculated to get tangently stiffness 

matrix 
e

T
  K  and loading vectors  int

e
F  and  e

extF . The superscripts (i, k, m) denotes 

respectively the global counter including the current incremental loading step, 

number of elements and number of Gauss integration points. After the i loading 

step(s), the converged displacement solution  iD  at the current load F  will be 

utilized for providing incremental displacement to continuously take next loading 

step. In material level, the convergence criterion can be defined by using Eq. 4.11 or 

Eq. 4.12, which are expressed respectively in terms of the displacement vectors. 

The nonlinear solutions for tracing load–deflection response of the model is 

presented as follows: 

Require: Beam geometry, material properties, external loads, and model 

description. 

Ensure: Displacement incrementation solutions  iD  for tracing load–

deflection response. 
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Initialize    0=D D ,         int 0ext= − =R F F   

Loop over load increments: 

for i = 1 to ninc do 

Find 
inc 

{ }:{ } X

i
F F F

n
  =   in which i is the current load 

increment 

Call global level routine for computing  TK ,  extF  and   intF   

Solve nonlinear equation       ( ) 0T i ext int − − =K D F F  for   iD  

Calculate    1i i i−= + D D D  

 Calculate the criterion  
 
 

1/2

i i

i

i i

  
 =  

  

D D
D

D D
 

 Convergence check for stopping the iteration loop:    610i

− D  

Save the current solution  iD in the global solution vector  D  

end for 

4.3 Numerical examples 

In this section, some numerical examples are carried out and the results are 

presented. It is noted that in all cases under consideration, the convergence study with 

regard to the number of elements is accomplished before extracting the results. 

Cantilever and simply-supported inflating composite beams loaded by compressive 

concentrated F are investigated. The slenderness ratio is /s L =  where oL l=  is 

the beam effective length. The numerical results obtained from tradtional finite 

element method and the IGA approach are then compared to show the accuracy and 

efficiency of the approach. It is noted that the C1 continuity of the IGA elements are 

naturally attained due to the fundamental characteristics of IGA, therefore, it could 

be considered as an advantage in numerical aspects in comparision to traditional 

Finite element approach. 
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4.3.1 Linear buckling analysis 

The linear buckling analysis of inflating beams under compressive con-

centrated load is performed to derive the critical load parameters. In order to assess 

the influence of the inflation pressure, the inflating beam is pressurized. To examine 

the linear eigen buckling behavior, the normalized linear buckling load coefficient 

( )510 /l

c cr eqK E=   proposed by Ovesy [50] is introduced, in which cr  is the linear 

buckling critical stress of the beam and eq l tE E E=  is the equivalent Young’s 

modulus of the current material Paschero [51]. The material, geometric parameters 

and pressure values used for LFEIB model are given in Table 4.1. 

Table 4.1 Input parameters for modeling LFEIB model 

Natural thickness, ( )t m   6125 10−  

Correction shear coefficient, 
yk   0.5 

Boundary condition Simply-supported Fixed-free 

Natural radius, ( )R m  0.08 0.08 

Natural length, ( )l m  1.15 0.65 

Young modulus, E  (MPa) 250 250 

Poisson ratio, v  0.3 0.3 

Internal pressure ( )kPa  

p1 10 

p2 20 

p3 30 

p4 40 

4.3.1.1 Simply-supported beam 

Figure 4.1 illustrates a cylindrical inflating composite beam under simply-

supported constrains and subjected to axial compression load. 
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Figure 4.1 Model of a simply-supported inflating beam subjected to axial 

compression load. 

The input paremeters are presented in Table 4.1. Simply-supported boundary 

condition is assigned by, 

0u v= =
 
at x 0=  and 0v =

 
at 

0
x l=  

As shown in Figure 4.2, the convergence studies on the normalized buckling 

coefficient l

cK  of LFEIB model reveal that about 4 quadratic NURBS-based 

Timoshenko elements are sufficient to obtain converged results. These results are in 

a good agreement with those derived by standard 3-node Timoshenko element used 

by Nguyen [52]. Table 4.2 estimates the error of numerical solutions in comparison 

with closed-form ones derived from analytical approach Nguyen [52]. Obviously, 

better results are obtained by using IGA models compared to FEM models. It should 

be noted that less degrees of freedom (DOFs) required to construct finite mesh of 4 

quadratic NURBS-based elements (6 control points, 30 DOFs) in comparison with 

standard finite elementingmesh (9 nodes, 45 DOFs). As a result, IGA model 

significantly improves computational efforts. Moreover, the proposed approach 

based on IGA produces a stable solutions especially in case of large inflation pressure 

(case p4=40kPa). Further, the buckling load coefficient l

cK  gradient depends on the 

normalized pressure :np  at higher of ,np  the gradient of l

cK  becomes larger. 
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Figure 4.2 Linear eigen buckling: mesh convergence test of normalized linear 

buckling load coefficient ( )510 /l

c cr eqK E=   for a simply-supported LFEIB 

model. 

Table 4.2 Normalized critical loads l

cK  of simply-supported LFEIB inflating beam 

Pressure 

(kPa) 

Closed-

form [52] 

(1) 

FEM (2) IGA (3) 

Error (%) 

(2) & (1) (3) & (1) 

10 25.31 23.11 23.12 8.69 8.65 

20 33.48 31.42 31.43 6.15 6.12 

30 43.27 42.22 42.22 2.43 2.43 

40 54.72 31.15 56.18 43.07 2.67 

*(2) & (1) denotes the differences between FEM and closed-form solutions, 

(3) & (1) denotes the differences between IGA and closed-form solution 

4.3.1.2 Fixed – Free beam 

A cantilever LFEIB model is illustrated in Figure 4.3. 
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Figure 4.3 Model of a cantilever inflating beam under axial compression load. 

Material and geometric properties are assumed in Table 4.1. Clamped 

boundary condition is assigned by, 

0x yu v w  = = = ==
 
at x 0=  

Buckling load of the cantilever inflating beam with different inflation 

pressures based on isogeometric analysis is plotted in the Figure 4.4. 

 

Figure 4.4 Linear eigen buckling: mesh convergence test of normalized linear 

buckling load coefficient ( )510 /l

c cr eqK E=   for a cantilever LFEIB model. 

The obtained results are in excellent agreement with ones derived using 

standard finite elementingmethods given by Nguyen [52]. Futhermore, it can be 

observed a fast convergence in isogeometric analysis due to the high continuity in 

finite elementingmesh. Addtionally, isogemetric analysis requires less total degrees 

of freedom (DOFs) than standard FEM and hence saving the computational effort 

that is significant in nonlinear analysis of the inflating composite beams. 
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The linear eigen buckling of the inflating composite beams is successfully 

obtained in the framework of NURBS-based isogeometric analysis. Numerical 

testings are conducted in various boundary conditions as well as geometric 

configurations. This reliable solution verifies the accuracy of the proposed method. 

The fast convergence and using less DOFs also show the robustness of the 

isogeometric analysis inflating composite beam models that promissing in further 

analysis of geometric and material nonlinearity. 

4.3.2 Nonlinear analysis 

The critical load calculated in the linear buckling analysis above is appropriate 

only if there is little or no coupling between membrane deformation and bending. 

Consider the figure Figure 4.5, in which a small initial imperfection is introduced: 

either a slight initial curvature or a slight eccentricity of the compressive load F. With 

the increase of the initial imperfections, the beam implies large displacements rather 

than buckling. Hence, a linear bifurcation analysis may overestimate the actual 

collapse load. The normalized nonlinear load parameter at 
thi  increment of axial load 

is defined by, 

6

0

10nl i
c

eq

F
K

E A
=   4.16 

 

Figure 4.5 (a) Inflating beam subjected to compressive axial load F. (b) The effect 

of an initial imperfection (Nguyen [52]) 

The model is made up of the material 1 and 2 as defined in  
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Table 4.4 The deflection solutions vD  along Y axes obtained from the 

NLFEIB model are considered as the change in the flexion-to-radius ratio ( )frR  as 

0/vD R , whereas the axial displacement solutions uD  along X axes are referred to the 

change in the length-to-radius ratio ( )lrR  as 0/uD R . For the same normalized 

pressure and material properties, the smaller values of lrR  and frR  represent the more 

stable beam. 

 

Table 4.3 Input parameters for modeling models 

Parameter 

type 
Input Physical interpretation Value 

Material 

properties 

lE  Young modulus in warp direction 
See  

Table 4.4 

tE  Young modulus in weft direction  

 ltG  In-plane shear modulus  

 ltv  

Poisson ratio due to the loading in l 

direction and contraction in the t 

direction 

 

 tlv  

Poisson ratio due to the loading in t 

direction and contraction in the l 

direction 

 

Beam 

geometry 
l  Length of the inflating beam 

See  

Table 4.4 

(in the natural 

state) 
R  External radius of the inflating beam  

 t  Thickness of the inflating beam  

External load p Inflation pressure 10-200 (kPa) 

 XF  Concentrated load in X-axis 1500 (N) 
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  iF  Increment load vector  

  incn  Number of load increments 10 

Model 

description 

en  Number of elements 4 

ne  Number of control points per element 3 

 nn  Number of control points in global degen +  

 dofn  Number degrees of freedom per node 5 

 dofe  Number degrees of freedom per element .n dofe n  

 gdof  Number of global degrees of freedom .dof nn n  

 m  Number of Gauss integration points 3 

 

Table 4.4 Data set for inflating beam 

Natural thickness, ( )t m   45 10−  

Correction shear coefficient, yk   0.5 

Natural radius, ( )R m   0.14 

Natural length, ( )l m   3 

Orthotropic fabric's mechanical properties: Material 1 Material 2 

 (Exp.) (Cheng et 

al.(2009)) 

Young modulus in warp direction, lE  (MPa) 2609 19300 

Young modulus in weft direction, tE  (MPa) 2994 14240 

In-plane shear modulus, ltG  (MPa) 1171 6450 

Poisson ratio, ltv  0.21 0.28 

Poisson ratio, tlv  0.18 0.22 
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Table 4.5 Normalized pressure ( )np  for different values of internal pressure ( )p  

used in the study. 

p  (kPA) 
np  

Material 1 Material 2 

p1 10 324 43 

p2 20 648 85 

p3 30 972 128 

p4 40 1295 171 

4.3.2.1 Simply-supported beam 

In this problem, the nonlinear buckling of a simply supported inflating beam 

subjected to an axial compressive load F is investigated by the procedure proposed 

in Section § 4.2.2. The numerical examples contain large deformation analyses of 

NLFEIB model and illustrate the performance of the derived algorithm. A parametric 

study is carried out for studying the influence of normalized pressure on the NLFEIB 

model. At each level of normalized pressure, the corresponding crushing load 

( )crush pF F=  is the upper bound of the axial load applied to the beam. The 

displacements at the middle span of the beam are extracted from the global solution. 

Figure 4.5 and Figure 4.6 show the variation of flexion-to-radius ratio and 

length-to-radius ratio with increments of normalized load parameter nl

cK  in two cases 

of material. It is noted from the linear buckling analysis that 4 elements are sufficient 

to obtain converged results. At low pressure the model is unstable and therefore will 

fail first. At higher pressures, the frR  ratio responses are quasi-linear for low 

increments of nl

cK . The curves become nonlinear gradually at higher .nl

cK  

In another parametric study, the influence of the fabric properties in 

conjunction with the effect of the normalized pressure is pointed out. Two HOWF 

inflating beams made of material 1 and 2 are considered. As mentioned in Section § 

4.3, the nonlinear iterative solutions are obtained with inputs of normalized pressure 

and are normalized by two aspect ratios lrR  and .frR  
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The effects of boundary condition and material properties are clearly 

illustrated by the responses of simply-supported (SS) inflating beams. In case of 

material 1 which has low elastic modulus than material 2, the buckling of SS beam is 

more sensitive at high level of internal pressure. It appears mode jump behavior when 

the beam withstanding increasing axial compression loads. In contrary, the distortion 

in load-deflection does not happen in the configuration of clamped inflating beams. 
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Figure 4.6 Nonlinear buckling: variation of flexion-to-radius ratio ( )/fr v oR D R=  

with increasing normalized nonlinear load parameter ( )( )6

010 /nl

c i eqK F E A=   for a 

simply supported NLFEIB model. 
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Figure 4.7 Nonlinear buckling: variation of length-to-radius ratio ( )/lr u oR D R=  

with increasing normalized nonlinear load parameter nl

cK  for a simply supported 

NLFEIB model. 

4.3.2.2 Fixed-free beam 

In this example, the nonlinear buckling of a cantilever inflating beam subjected 

to an axial compressive load F is investigated. The discrepancy due to the normalized 

pressure between the results is clearly shown. The variation of flexion-to-radius ratio 

with increments of normalized load parameter nl

cK  in two cases of material is given 

in Figure 4.7. Additionally, Figure 4.8 presents length-to-radius ratio lrR
 
versus the 

incremental load ratio nl

cK . The results show that the beam pressurized to higher 

pressures exhibits a better load-carrying capacity (more stable). 

It is also shown that in both cases of normalized pressure, the beams made of 

high moduli fabric (material 2) exhibit more stability (lower values of lfR  and frR ). 

The comparison between the beam response curves in two different inputs of 

normalized pressure also illustrates well that the beams with higher normalized 

pressures have the larger limits of lrR  and frR  ratios before crushing than those with 

lower pressures. This is attributed to the fact that once the tows are sufficiently 

stressed, the inflating beam possesses flexural stiffness capable of resisting a 

combination of direct compressive stress and bending. 

Again, the nonliear buckling of inflactable composite beams is successfully 

obtained by using isogeometric analsys model. In this section, the variation of not 

only boundary condition but also material is taken into acount and the numerical 

algorithm sucessfully traced the load-deflection response of inflating beams. 
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Figure 4.8 Nonlinear buckling: variation of flexion-to-radius ratio ( )/fr v oR D R=  

with increasing normalized nonlinear load parameter ( )( )6

010 /nl

c i eqK F E A=   for a 

cantilever beam. 
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Figure 4.9 Nonlinear buckling: variation of length-to-radius ratio ( )/lr u oR D R=  

with increasing increasing normalized nonlinear load parameter nl

cK  for a 

cantilever beam 

4.4 Conclusions 

In this chapter, the linear and nonlinear buckling analyses of inflating beam 

are conducted. The governing equations are derived based the energy approach that 
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the changing in membrane energy and the bending strain energy accounted. The 

governing equations are then are discretized based on the IGA approach, in which the 

NURBS basis functions are used to construct exact geometry and act as interpolation 

functions. 

In the linear buckling analysis, a mesh convergence test on the beam critical 

force showed the significant improvement of the proposed numerical model in 

comparison with standard finite element method. The results on the buckling 

coefficient were also in a good agreement with those available in literature. In the 

nonlinear buckling analysis, the method sucessfully traced the load-deflection 

response of inflating beams. 

Two methods FEM and IGA have been applied to verify the numerical method 

for the inflating beam model. A simple beam model was simulated and calculated. 

The IGA method shows that building numerical models for the problem is relatively 

more accurate. 
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CHAPTER 5: BUCKLING EXPERIMENTS OF 

INFLATING BEAMS 

 

5.1 Introduction 

This chapter presents methodologies of materials selection and prototyping 

procedure. An experimental program for buckling behavior of inflating beams 

fabricated from woven fabric composites is presented, in which various values of 

internal pressure is also considered. The chapter begins with a brief review of 

buckling of thin-walled shell structures, followed by the material test of woven fabric 

composites. After that, the fabrication procedure of inflatable beams and the buckling 

testing setup are described in detail. Discusion and remarks on the results obtained 

are then given. In addition, the experimental results is used to calibrate the numerical 

model of inflatable beams to predict the buckling behaviour of the beam fabricated 

from orthogonal fibre laminated fabrics. The objective of the experiment and 

acquisition data include: 

- Determine the load-displacement relation of the inflatable beam with 

different air pressures. 

- Determine the maximum load-carrying capacity of the inflatable beam with 

respect to the appearance of the first wrinkle. 

5.2 Material properties and selection of fabrics 

Due to real conditions in Vietnam, several fabrics types are used to make the 

air beams but there are not enough techinical specifications. Therefore, before the air 

beams are proceeding to fabricate, the mechanical properties of the selected fabrics 

definitely be checked. 

The mechanical properties of woven fabrics are examined prior to fabricating 

inflatable beams. The test procedure is based on ASTM-D638/Form IV as 

recommended, see Table 5.1, and following steps are adopted: 

Step 1: Cut dog-bone shape specimens in longitudinal and transverse 

directions. 
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Step 2: Conduct axial tensile test for determining elasic modulus and ultimate 

tensile strength of the fabrics. 

Table 5.1 Criteria and method for experiment of composite fiber 

No. Criteria Experiment method Unit 

1 Thickness standard ASTM-D5199 mm, mil 

2 Proportion ASTM-D792 kg/m3 

3 
Tensile strength at break limitation 

Elastic module 
ASTM-D638/Form IV KN/m 

4 Tensile strength at bending limitation ASTM-D638/Form IV KN/m 

5 Stretch ratio at break limitation ASTM-D638/Form IV % 

6 Stretch ratio at bending limitation ASTM-D638/Form IV % 

7 Strength of puncture resistance ASTM-D4833 N 

8 Strength of tearing resistance ASTM-D1004 N 

9 Carbonate ratio ASTM-D1603 % 

5.2.1 The woven fabric materials 

Table 5.1 shows some of fabric composite materials available in the market 

which can the used for making inflatable beams. Two of them in Table 5.2 are widely 

used to make inflatable component are chosen for material tests. 

 

Figure 5.1 Fabric type 
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Figure 5.2 Waterproof PVC Laminated Tarpaulin and Coated Vinyl Fabrics 

The dog-bone shape coupon for tesile test has the geometric dimensions 

presented in Figure 5.3 and Table 5.3. 

Hydraulic Press Mold was employed to cut the dog-bone shape coupons. The 

equipment consists of a Toggle Press for Cutting Dies and Cutting Dies shown in 

Figure 5.4. 
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Figure 5.3 Samples after made looked like barbel 

Thickness, T, shall be 0.5 ± 0.4 mm for type of molded specimen. 

Table 5.2 Dimension of sample measurement 

Notation Description Value (mm) (Type IV) 

W Section’s width 6 ± 0.5 

L Section’s length 33 ± 0.5 

WO Overall width 19 ± 6.4 

LO Overall length ≥ 115 

G Length measurement 25 ± 0.13 

D Distance between 2 vices 65 ± 5 

R Internal diameter 14 ± 1 

RO External diameter 25 ± 1 
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(a) 

• Tensile Force: 20 kN 

• Opening: 0-30mm 

• Clamping Surface Size: 

50x60mm, 50x100mm 

• Clamping Surface: Plain, 

Rubber, Wave, Serrated 

  

 

(b) 

• Tensile Force: 20 kN 

• Opening: 0-30mm 

• Clamping Surface Size: 

50x60mm, 50x100mm 

• Clamping Surface: Plain, 

Rubber, Wave, Serrated 

Figure 5.4 Cutting Dies: (a) Toggle Press for Cutting Dies, (b) Cutting Dies 

The dog-bone tensile test samples after cutting are shown in Figure 5.5. The 

first fabric is made of Waterproof PVC Laminated Tarpaulin, and the second fabric 

is made of Coated Vinyl Fabrics. 

  

(a) (b) 

Figure 5.5 Samples were cut with flat form: (a) Sample 01, (b) Sample 02 
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5.2.2 Testing equipments 

The tensile test is conducted using the Instron 8801 Series Servohydraulic 

Fatique Testing Machine as presented in Figure 5.6. 

 

Figure 5.6 Instron 8801 Series Servohydraulic Fatique Testing Machine.  

(Location: National Key Lab. of Polymer & Composite Materials – Ho Chi 

Minh City University of Technology) 

The testing procedure is following the guidance of ASTM D638 which covers 

the determination of the tensile properties of unreinforced and reinforced plastics in 

the form of standard dumbbell-shaped test specimens when tested under defined 

conditions of pretreatment, temperature, humidity, and testing machine speed, 

namely Speed of Testing: (5mm/min), Room temperature (250C), Humidity (<50%). 

In this method, sample with rectangle section was clamped into two vices of pulling 

tool. It would be pulled until broken. The tensile tests are shown in Figure 5.7. 
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(a) 

 

(b) 

Figure 5.7 Tensile test for (a) sample 01 and (b) sample 02 

5.2.3 Mechanical properties of woven fabric composites 

The tensile dog-bone samples are cut in longitudinal as well as tranverse 

directions. Tensile test is repeated five times for each material in each cut-direction. 

The test results are presented in Table 5.3 and Table 5.4. 

Table 5.3 shows the material properties in longitudinal axis of the first woven 

fabric composite. It can be seen that the average ultimate tensile force was 290.36 N 

with respect to an average longitudinal extension of 11.37 mm, corresponding to the 

ultimate tensile strength in longitudinal axis of the first fabric of 73.32 MPa and the 

elastic modulus is 314.27 MPa. 

Table 5.4 shows the material properties in longitudinal axis of the second 

woven fabric composite. It can be seen that the average ultimate tensile force was 

139.01 N with respect to an average longitudinal extension of 22.36 mm, 

corresponding to the ultimate tensile strength in longitudinal axis of the second fabric 

of 35.01 MPa and the elastic modulus is 51.61 MPa. 
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Table 5.3 Result of sample 1’s longitudinal grain 

No. 
Maximum 

Load (N) 

Tensile stress at 

Maximum Load 

(MPa) 

Tensile extension 

at Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

1 286.770 72.417 11.357 246.347 

2 268.829 67.886 10.432 275.595 

3 332.427 83.946 12.387 383.451 

4 275.540 69.581 11.679 186.772 

5 288.248 72.790 10.984 479.192 

Average 290.36 73.32 11.37 314.27 

Table 5.4 Result of sample 2’s longitudinal grain 

No. 
Maximum 

Load (N) 

Tensile stress at 

Maximum Load 

(MPa) 

Tensile extension 

at Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

1 149.0831 37.6473 22.9861 42.0379 

2 146.6751 37.0392 22.5536 49.1538 

3 137.6748 34.7664 22.7325 59.1013 

4 129.7951 32.7765 22.6066 53.9681 

5 131.8216 33.2883 22.3945 53.7952 

Average 139.01 35.10 22.65 51.61 

The relation between the axial forces and the extensions of the sample is 

presented in Figure 5.8 and Figure 5.9. For the first fabric, the load-extension curve 

is nonlinear as the load below 50 N, but when the load is increasing, the curve 

becomes linear until its failure. It also can be seen that the tensile strength of the first 

(yellow) fabric is much stronger than the the second (red) fabric. 
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Figure 5.8 Graph of tensile strength of sample 1’s longitudinal grain 

 

Figure 5.9 Graph of tensile strength of sample 2’s longitudinal grain 

Next, the tensile dog-bone samples cut in transverse grain are tested. The test 

results are presented in Table 5.5 and Table 5.6. 

The material properties in transverse axis of the first woven fabric composite 

are presented in Table 5.5. It can be seen that the average ultimate tensile force was 

252.81 N with respect to an average transverse extension of 16.89 mm, corresponding 

to the ultimate tensile strength in transverse axis of the first fabric of 63.84 MPa and 

the elastic modulus is 246.06 MPa. 
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Table 5.6 presents the properties in transverse axis of the second woven fabric 

composite. It can be seen that the average ultimate tensile force was 151.10 N with 

respect to an average transverse extension of 16.16 mm, corresponding to the ultimate 

tensile strength in longitudinal axis of the second fabric of 38.16 MPa and the elastic 

modulus is 56.29 MPa. 

Table 5.5 Result of sample 1’s horizontal grain 

 
Maximum 

Load (N) 

Tensile stress at 

Maximum Load 

(MPa) 

Tensile extension 

at Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

1 280.0942 70.7309 17.1736 637.7190 

2 233.6860 59.0116 16.8591 72.2702 

3 262.2843 66.2334 17.6091 79.5614 

4 227.7255 57.5064 16.7840 115.0650 

5 260.2816 65.7277 16.0069 325.6821 

Average 252.81 63.84 16.89 246.06 

 

Table 5.6 Result of sample 2’s horizontal grain 

 
Maximum 

Load (N) 

Tensile stress at 

Maximum Load 

(MPa) 

Tensile extension 

at Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

1 147.7361 37.3071 14.9831 68.3675 

2 144.7439 36.5515 16.3522 67.3319 

3 159.8239 40.3596 16.3607 47.4520 

4 141.7041 35.7839 15.7577 49.8744 

5 161.4928 40.7810 17.3269 48.4138 

Average 151.10 38.16 16.16 56.29 

Figure 5.10 and Figure 5.11 demonstrate the load-extension relations of the 

first and second fabrics respectively. Similar to longitudinal axis, the load-extension 

relation become linear after a certain low value of extension. The linear relation 

develops until the fracture occurring suddenly without an obvious warning. 
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Figure 5.10 Graph of tensile strength of sample 1’s horizontal grain 

 

Figure 5.11 Graph of tensile strength of sample 2’s horizontal grain 

From the material tests, it can be seen that the first fabric has much higher 

tensile strengths in both longitudinal and transverse directions. Also, the leastic 

modula of the first (yellow) fabric in longitudinal and transverse axes are 

approximately five times the ones of the second (red) fabric. Therefore, the first fabric 

is to be the material for fabricating the inflatable beam specimens. 
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5.3 Test of joint’s durable strength 

To fabricate inflatable beam specimens which meet engineering and aesthetic 

requirements, a special technology process to join fabric edges together is very 

important. To avoid air leaking under high pressure. In this study, two methods 

making fabric joints are investigated: 

1) Glued joint. 

2) Glued joint with thermal attachment. 

Glued joint: 

Firstly, a thin layer of PVC glue of approximately 15 µm was applied on the 

joined areas, then wait for 2 minutes for the glue to be settled. Secondly, lay the 

contact surfaces on each other and apply a compression force of 10 N until the glue 

being cured. Next, check if the joint has any defects: exessive of glues out of the joint 

areas, air bubbles, tears, etc; if not, redo the joint. 

Glued joints with thermal attachment: 

Firstly, a thin layer of PVC glue of approximately 15 µm was applied on the 

joined areas, then wait for 2 minutes for the glue to be settled. Secondly, lay the 

contact surfaces on each other and apply a compression force of 10 N and impose a 

heat of 1000 C on the joint until the glue being cured. Next, check if the joint has any 

defects: exessive of glues out of the joint areas, air bubbles, tears, etc; if not, redo the 

joint. 

Currently, there is not any study to determine which distance (d) is properly 

suitable for stacking joint and what method should be used to enhance joint’s 

durability, thus this experiment will use samples created following different methods 

and distinct joint’s widths so as to seek an optimal methodology of making joints and 

joint’s dimensions with the best durability. Besides, joint’s dimensions do not affect 

the process of making inflatable beam and the next experiments’ results. 

Measure durability of 180o flat joint (ASTM D903). This test method covers 

the determination of the comparative peel or stripping characteristics of adhesive 

bonds when tested on standard-sized specimens and under defined conditions of 

pretreatment, temperature, and testing machine speed. Preparation of Test Specimen: 
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Bond area by adhesive with pressure and heat. Testing Conditions: - Room 

Temperature: 25 ± 20C - Humidity: 50 ± 5% - Testing speed: 5 mm/min. 

In order to choose the proper size of the glued joint and assess the quality og 

the glued joint, the glued joint test samples are fabricated as in Figure 5.12, in which: 

a is the grip length, b is the original length, d is the glued length and c is the width of 

the joint. The actual dimensions are provided in Table 5.7, with d taken as 1cm, 2cm 

và 2.5cm. 

 

Figure 5.12 Shape of Samples: Test Specimen 

Table 5.7 Sample’s measurement. Sample dimensions (mm) 

Distance of grip, a 15 

Distance between of grips, b ( )40 45 2 d  +  

Length of bond line, d 
as required by each 

experiment 

Width of specimen, c 25 

5.3.1 Glued joint PVC 1cm 

After the glued joint samples are made, the assessment of the glued joint is 

investigated by tensile test. Similar to the material test, the glued joint test also is 

taken with five samples. 

Figure 5.13 presents the test results of glued joint without imposing heat. It 

can be seen the fracture occurred at the glued joint because the bonding of two 

surfaces in 1 cm length is not as strong as tensile strength of the fabric. 
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Figure 5.13 Glued joint test of 1 cm length 

Figure 5.14 shows the load-extension relation of the glued joint sample with 1 cm 

length connection, and the  

 

Figure 5.14 Glued joint PVC 1cm 

 

Table 5.8 presents the result data. It can be seen that the joint was delaminated 

the load of 731 N, and the average tensile strength of the glued joint was 24.4 MPa 

which far lower and one of origin material (73.32 MPa). Accordingly, the glued joint 

area of 1 cm without thermal treatment is not adequate. 
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Table 5.8 Result of Glued joint PVC 1cm 

 

Maximu

m Load 

(N) 

Tensile stress 

at Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

Force/Wid

th, N/mm 

1 785.160 26.172 10.389 220.560 785.160 

2 707.126 23.571 9.644 221.692 707.126 

3 677.049 22.568 9.371 218.432 677.049 

4 774.992 25.833 10.640 205.948 774.992 

6 799.286 26.643 10.824 219.006 799.286 

Average 731.989 24.400 9.999 214.692 731.989 

5.3.2 Glued joint PVC 1cm thermal 

Similar to the previous test, the glued joint PVC 1 cm thermal was also 

fractured at the connection as can be seen in Figure 5.15. Therefore, the glued joint 

needs to be extened. 

  

Figure 5.15 Experiment result 
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Figure 5.16 Glued joint PVC 1cm thermal 

Table 5.9 Result Glued joint PVC 1cm thermal 

 

Maximu

m Load 

(N) 

Tensile 

stress at 

Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

Force/

Width, 

N/mm 

3 766.945 25.565 18.081 157.767 30.678 

4 764.585 25.486 17.370 147.115 30.583 

5 754.797 25.160 17.790 154.386 30.192 

6 804.996 26.833 18.318 149.532 32.200 

Average 772.831 25.761 17.890 152.200 30.913 

5.3.3 Glued joint PVC 2cm thermal 

For the glued joint PVC 2cm with imposing heat, the fracture was also 

occurred at the connection as shown in Figure 5.17 and Figure 5.18 with test data 

provided in Table 5.10. 
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Figure 5.17 Experiment result 

 

Figure 5.18 Glued joint PVC 2cm thermal 

Table 5.10 Result of Glued joint PVC 2cm thermal 

 
Maximum 

Load (N) 

Tensile 

stress at 

Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

Force/

Width, 

N/mm 

1 1041.496 34.717 13.204 252.495 41.660 

2 894.153 29.805 11.955 215.143 35.766 

4 909.185 30.306 12.487 211.563 36.367 

6 960.720 32.024 12.677 239.693 38.429 
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7 1039.243 34.641 13.148 207.452 41.570 

Average 968.959 32.299 12.694 225.269 38.758 

5.3.4 Glued joint PVC 2.5 cm with thermal attachment 

The glued joint is extended to 2.5cm long and imposed thermal attachment. It 

can be seen that the joint is acceptable as the failure was occurred outside the 

overlapped joint. From consequence above, joints applied PVC glue and thermal 

attachment would improve much more when compared with the normal method 

(examined through force/width unit. Method using PVC glue and thermal attachment 

was better durable than normal one. To reinforce joint’s strength, the method using 

PVC glue and thermal attachment (overlapped edges 2.5cm). 

 

Figure 5.19 Experiment result 

 

Figure 5.20 Glued joint PVC 2.5cm thermal 
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Table 5.11 Result of Glued joint PVC 2.5cm thermal 

 
Maximum 

Load (N) 

Tensile 

stress at 

Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus 

(E-

modulus) 

(MPa) 

Force/Width, 

N/mm 

1 1275.480 42.516 17.508 652.449 51.019 

2 1347.470 44.916 18.637 179.301 53.899 

3 1229.393 40.980 15.878 181.337 49.176 

4 1340.795 44.693 16.605 263.935 53.632 

5 1242.626 41.421 16.381 245.781 49.705 

Average 1287.153 42.905 17.002 304.560 51.486 

5.4 Inflatable beam specimens 

It is necessary to depend on the available fabric sizes in Vietnamese market 

and experimental experiences so that it can match the initial experimental conditions. 

The fabrication of specimens requires extra cares to avoid air leaking. Firstly, 

the beam body is constructed by joining the fabric along the length of the cylinder 

with the glued PVC 2.5 cm joint. To connect the cap of the beam to cylinder body is 

more complicated. The geometric dimnesions of the inflatable beam specimens with 

cylinder form has parameters as below: 

Natural length:   L = 200cm (excluding 2 caps at its 2 ends) 

Natural outer Radius:  R = 10cm 

Following tensile and stick experiment’s data, sample 1’s material (yellow 

fiber) was chosen for processing design of Inflatable beam samples.  Method using 

PVC glue and thermal pressure 2.5cm. Two caps at two ends need machining so that 

they are very close, glued or sewed joining area can be suffered pneumatic pressure.  

Therefore, deployment may run into some issues, those are joint’s errors that make 

air leaking outside beam.  Thus, sticking process must be done carefully, an amount 

of glue is absolutely enough, and the imposing heat must be correct so as to their 

unification. 



5.4 Inflatable beam specimens 

111 

Structure of 2 valves of pumping and manometer at the position 20cm from 

beam’s end. One should be located far from another (600-900). 

 

Figure 5.21 Design of inflatable beam 

 

Figure 5.22 Valves of pumping and manometer 

 

 

Figure 5.23 Inflatable beam after pumping 
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Figure 5.24 Inflatable beam’s manometer 

5.5 Buckling test set-up 

In this study, three cylindrical inflatable beams are fabricated with the radius 

of R=100mm and the length of L=2m. A compressive load F is applied incrementally 

at one beam end: at first, one resets the load F to zero, and then gradually increases 

F. To visualize the lateral deflections of the beam during its axial compression 

loading, a tachometer with the precision order of 1 mm was used. The device was 

positioned about 4-5m of the testing beam. 

This sequence is repeated until the first wrinkles appear which is called the 

critical point. At this point, the load F is the critical load of the beam. After passing 

the critical point, the beam rigidity has decreased, the axial displacement becomes 

very large and the compressive load cannot be increased. 

The beam is subjected to an internal pressure p first under which the beam is 

in a prestressing state. An external load F is applied by a winch stacker at the end in 

the axial direction of the beam. A schematic view of the test set-up is shown in Figure 

5.15. 
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Figure 5.25 Schematic diagram of simply supported HOWF inflatable beam and 

instrumentation for buckling test 

Due to the apparatus limitations, the boundary conditions applied to the 

structure are only simply supported. The beam is mounted in a vertical chassis with 

two supports at two ends. The support at bottom (the load applied end) is movable in 

axial direction. The experimental apparatus is shown in Figure 5.26. 

The inflatable beams having the diameter of 200mm and the length of 2m is 

inflated with the air pressure of 1 kg/cm2 (1kPa). The air pressure is monitored via a 

dial gauge attached to the valve built in the beam body. 

One end of the beam is fixed to the test frame and the other end is only free to 

move in axial direction. 

The test frame 

 The test frame as shown in Figure 5.26 is made of standard alluminum 

uprights having a fixed top end and the bottom end can move following the 

alluminum guide. The whole frame is attached rigidly to the wall. 
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Figure 5.26 Frame system 

Fixed-end and pin-end supports 

Fixed-end support includes an alluminum plate fixed to the frame and a 

adjustable ring to fit the inflatable beam. The pin-end support at the bottom is also 

attached to an alluminum plate and has a ring to hold the bottom end. The bottom end 

is attached to the uprights with roller, allowing axis displatement of the bottom end. 

Figure 5.27 illustrates detail of these supports. 
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Figure 5.27 The fixed-end and pin-end support 

Instrumentation 

- A load jack as shown in Figure 5.28 is used to apply axial compressive load 

onto the beam and the load value is monitored by using a load-cell placed between 

the jack and the bottom alluminum plate, see Figure 5.29. 

 

Figure 5.28 A load jack 



CHAPTER 5: BUCKLING EXPERIMENTS OF INFLATING BEAMS 

116 

  

Figure 5.29 Mounting load cell type Z to the structure and restraints at top and 

bottom of an inflatable beam 

Linear Variable Differential Transformer (LVDT) is used to measure the axial 

and transverse displacements of the beam under load. The LVDT is connected to a 

data acquisition computer to record the displacement variable as shown in Figure 

5.30. 

 

Figure 5.30 Linear Variable Differential Transformer 
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Figure 5.31 Experimental apparatus of HOWF simply supported inflatable beam 

for measuring the critical load 

The pressure is measured twice per second and displayed by a precision digital 

manometer KK GAUGE Figure 5.32, which can measure up to 5 bar pressure with 

a precision of 0.01 bar. The pressures measured are in the range of 0.1- 0.3 bar. 

 

 

(a) Pressure control valve (b) Pressure gauge 

Figure 5.32 Digital Manometer KK GAUGE 

After setting up the measuring equipments, the beam is inflated up to a certain 

pressure to maintain the shape of the beam, then position the beam into the test frame. 

The beam is then inflated to the designed pressure. As the diameter of the beam is 

enlarged when increasing air pressure, the top and bottom rings need to be adjusted 

to fit the beam, see Figure 5.33. 

Loadcell 
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Figure 5.33 The locator ring can be adjusted in diameter 

After inflating the beam, the axial compressive load is gradually applied at the 

bottom end. The load value is monitored via data acquisition to control the load rate. 

A beam specimen will be tested with four different values of air pressure, i.e. 20 kPa, 

40 kPa, 60 kPa and 80 kPa. It can be seen in the Figure 5.34 that the wrinkle appears 

at the same positon of the beam indepentable to the air pressure values. Therefore, it 

can be concluded that the wrinkle position is dependent to the beam’s geometry and 

material properties rather than the air pressure. 

 

Figure 5.34 Position wrinkles begin to appear 

The locator ring 

Beam 1 Beam 3 Beam 2 First wrinkles 
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Figure 5.35 The first wrinkles appears 

The first wrinkle indicates the instability configuration of the beam and the 

largest deflection occurs at the wrinkle position. 

5.6 Experimental results and discussion 

A typical test included the following steps: 

1. Loading the beam until the first wrinkles of the skin appeared. Releasing 

the load. 

2. Loading and unloading the beam above the first buckling load several times. 

3. Loading the beam until collapse. 

Strain gages, end-shortening and lateral readings as a function of the axial 

compression loading were recorded at each of above step, accompanied by video 

recording and photographs. It is also noted that the wrinkle magnitude is proportional 

to the beam rigidity. The beam must be relaxed in a reasonable time between the tests 

for the wrinkles disappear completely. 

Sensor initial 

position 

First wrinkles 
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5.6.1 Load vs displacement u relation of beam at pressure 

The experimental results determine the load-displacement relation of the 

inflatable beams with air pressures of 20 kPa, 40 kPa, 60 kPa and 80 kPa shown in 

Table 5.12-Table 5.15 and Figure 5.36-Figure 5.39 respectively. 

In Table 5.12-Table 5.15, it can be seen that the largest deviation is about 

4.7% occuring as soon as the occurrence of the wrinkle. Such a small deviation 

indicates a good measurement method. 

According to the Figure 5.36-Figure 5.39, it can be seen that the axial 

displacement increases linearly with the applied load, and the stiffness of the beam 

increases with the increase of the air pressure. 

The first wrinkle appears when the axial displacement being about 70mm. The 

first wrinkle of the beam indicates the instablity of the beam, and soon enough the 

beam would buckle, leading to the significant decrease of load-carrying capacity of 

the inflatable beam. 

The wrinkle occurs at a similar location in the beam, e.g. at the middle section. 

This can be explaned that the air pressure in the beam increases its load-carrying 

capacity, but the air pressure does not affect the buckling mode of the beam. 

Each specimen is tested repeatedly four times for each air pressure magnitude. 

The critical load of the beam tends to be lower due to the fact that the the textile fibres 

have not fully recovered from the previous test. Therefore, it may be needed to 

investigate further into the composite material, as well as optimise the shape of the 

inflatable beam in order to obtain more accurate results. 

a) p = 20 kPa 
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Figure 5.36 Load vs displacement relation of beam at pressure p = 20 kPa 

Table 5.12 Load vs displacement relation of beam, p = 20 kPa 

P(N) 
u (mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

100 7.5 5 6 5.5 6.0 

130 13 13.5 14 14 13.6 

170 18 15.5 19 16 17.1 

370 23 22 25.5 24.5 23.8 

600 32 35 31 33.5 32.9 

860 45 46.5 47 43 45.4 

1170 58 56.5 53 54 55.4 

1440 65 70 68.5 66.5 67.5 

1600 75 74.5 73 72.5 73.8 



CHAPTER 5: BUCKLING EXPERIMENTS OF INFLATING BEAMS 

122 

1440 80 82 83 86 82.8 

P(N) 
u (mm) Beam 2 

Test 1 Test 2 Test 3 Test 4 Average 

100 6 6 7 5.5 6.1 

130 12.5 13 13 14.5 13.3 

170 16 17 19 18.5 17.6 

370 25 24.5 23.5 22 23.8 

600 33 32 33.5 35 33.4 

860 47 45 45.5 44 45.4 

1170 55 54.5 57 58 56.1 

1440 70 65 66 68.5 67.4 

1600 72 73 75 72.5 73.1 

1440 82 80 90 95 86.8 

P(N) 
u (mm) Beam 3 

Test 1 Test 2 Test 3 Test 4 Average 

100 6.5 7 7 6 6.6 

130 13.5 14 12 15 13.6 

170 18 16 19 20 18.3 

370 21 25 23.5 24.5 23.5 

600 35 32 33.5 34 33.6 

860 50 45.5 43.5 47 46.5 

1170 60 58 55.5 57 57.6 

1440 71 68 67.5 69 68.9 

1600 75 69 70 68.5 70.6 

1440 82 80 92 85 84.8 
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b) p = 40 kPa 

  

 

Figure 5.37 Load vs displacement relation of beam at pressure p= 40 kPa 

Table 5.13 Load vs displacement relation of beam, p = 40 kPa 

P(N) 
u (mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

200 10 12 13.5 14 12.4 

280 13 13.5 14 14 13.6 

350 17 15.5 18 16 16.6 

390 19 18.5 17 18 18.1 

620 32 28 27.5 28.5 29.0 

880 35 37 39.5 35 36.6 

1190 45 48.5 46 43 45.6 

1450 55 59.5 55 57.5 56.8 
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1890 75 74.5 75 75 74.9 

1450 80 82 83 86 82.8 

P(N) 
u (mm) Beam 2 

Test 1 Test 2 Test 3 Test 4 Average 

200 10 8.5 7 6 7.9 

280 16.5 18.5 13 13 15.3 

350 20.5 22 19 17.5 19.8 

390 25 24.5 26.5 26 25.5 

620 33 34.5 33.5 36.5 34.4 

880 46.5 45 41.5 45.5 44.6 

1190 55.5 54.5 55 52.5 54.4 

1450 63 64.5 62 65.5 63.8 

1890 72 73 74 74.5 73.4 

1450 82 80 90 95 86.8 

P(N) 
u (mm) Beam 3 

Test 1 Test 2 Test 3 Test 4 Average 

200 8 7 7 8.5 7.6 

280 12.5 12 10 15 12.4 

350 18 20 16 18.5 18.1 

390 19 24 22.5 23 22.1 

620 29 31.5 33.5 34 32.0 

880 45 43 44 45 44.3 

1190 56 52 54 57 54.8 

1450 62 65 67.5 66.5 65.3 

1890 75 69 71 68.5 70.9 

1450 82 80 92 85 84.8 
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c) p = 60 kPa 

  

 

Figure 5.38 Load vs displacement relation of beam at pressure p = 60 kPa. 

Table 5.14 Load vs displacement relation of beam, p = 60 kPa 

P(N) 
u (mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

230 9 8 7.5 8 8.1 

260 12.5 14 13 13.5 13.3 

600 18.5 15.5 19 16 17.3 

940 22.5 18 26 22.5 22.3 

1360 30 26.5 35 30 30.4 

1560 33.5 37 42.5 35.5 37.1 

1850 42.5 45 46 41.5 43.8 
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2020 53 61.5 60 59.5 58.5 

2350 75 73.5 74.5 72.5 73.9 

2020 80 82 83 86 82.8 

P(N) 
u (mm) Beam 2 

Test 1 Test 2 Test 3 Test 4 Average 

230 10 8 7 6 7.8 

260 15 12.5 11.5 15 13.5 

600 22 20 23.5 22.5 22.0 

940 25 23.5 26.5 26 25.3 

1360 33 33.5 34 35 33.9 

1560 41 43.5 41.5 44 42.5 

1850 54 54.5 55.5 53.5 54.4 

2020 63.5 61 62 66 63.1 

2350 74.5 75 73.5 73 74.0 

2020 82 80 90 95 86.8 

P(N) 
u (mm) Beam 3 

Test 1 Test 2 Test 3 Test 4 Average 

230 10 12 8.5 8.5 9.8 

260 13 12 10 16 12.8 

600 18 19.5 20 19 19.1 

940 22 22 22.5 21 21.9 

1360 29 30 33.5 33.5 31.5 

1560 38 42.5 42 42.5 41.3 

1850 49 50.5 50 55 51.1 

2020 59 62.5 62 62 61.4 

2350 72 71.5 75 69 71.9 

2020 82 80 92 85 84.8 
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d) p = 80 kPa 

  

 

Figure 5.39 Load vs displacement relation of beam at pressure p= 80 kPa 

Table 5.15 Load vs displacement relation of beam, p = 80 kPa 

P(N) 
u (mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

300 10 8 9 10 9.3 

350 15 15 13 13.5 14.1 

570 20 21 19 16 19.0 

950 25 28 28 30 27.8 

1380 35.5 33 36 32 34.1 

1860 39.5 37 45 40.5 40.5 

2300 45 51 49 46 47.8 
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2670 62 65 62 62.5 62.9 

3320 73 75 71.5 74 73.4 

2670 80 82 83 86 82.8 

P(N) 
u (mm) Beam 2 

Test 1 Test 2 Test 3 Test 4 Average 

300 10 10 12 15 11.8 

350 18 12.5 15 15 15.1 

570 22 18.5 20 26 21.6 

950 25 26 29.5 35 28.9 

1380 35 35 34 39.5 35.9 

1860 45 41 44 46 44.0 

2300 59 56 52 52 54.8 

2670 68 62.5 66 62.5 64.8 

3320 75 73.5 74 73 73.9 

2670 82 80 82 80 81.0 

P(N) 
u (mm) Beam 3 

Test 1 Test 2 Test 3 Test 4 Average 

300 11 12 15 14 13.0 

350 19 12 18 21 17.5 

570 25 21.5 20 26 23.1 

950 31 26.5 25 32 28.6 

1380 38 35.5 33.5 36.5 35.9 

1860 44 43 44 42.5 43.4 

2300 51 52 52 52 51.8 

2670 65.5 64 62 65 64.1 

3320 72 75 72 74 73.3 

2670 82 80 92 85 84.8 

300 11 12 15 14 13.0 
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5.6.1.1 Beams inflated with different air pressures 

The following Figure 5.40, Figure 5.41, Figure 5.42 and Table 5.16, Table 

5.17, Table 5.18 shows that carrying capacity of beams depends on pressure. The 

pressure increases, the loading capacity typically increases. 

a) Beam 1 

 

Figure 5.40 Load vs displacement relation of beam 1 at different pressures 

Table 5.16 Load vs displacement relation of beam 1 at different pressures 

p=20kPa p=40kPa p=60kPa p=80kPa 

u(mm) P(N) u(mm) P(N) u(mm) P(N) u(mm) P(N) 

6 100 12 200 8 230 9 300 

14 130 14 280 13 260 14 350 

17 170 17 350 17 600 19 570 

24 370 18 390 22 940 28 950 

33 600 29 620 30 1360 34 1380 

45 860 37 880 37 1560 41 1860 

55 1170 46 1190 44 1850 48 2300 

68 1440 57 1450 59 2020 63 2670 
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74 1600 75 1890 74 2350 73 3320 

83 1440 83 1450 83 2020 83 2670 

 

b) Beam 2 

 

Figure 5.41 Load vs displacement relation of beam 2 at different pressures 

Table 5.17 Load vs displacement relation of beam 2 at different pressures 

p=20kPa p=40kPa p=60kPa p=80kPa 

u(mm) P(N) u(mm) P(N) u(mm) P(N) u(mm) P(N) 

6 100 8 200 8 230 12 300 

13 130 15 280 14 260 15 350 

18 170 20 350 22 600 22 570 

24 370 26 390 25 940 29 950 

33 600 34 620 34 1360 36 1380 

45 860 45 880 43 1560 44 1860 

56 1170 54 1190 54 1850 55 2300 

67 1440 64 1450 63 2020 65 2670 

73 1600 73 1890 74 2350 74 3320 
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87 1440 87 1450 87 2020 81 2670 

 

c) Beam 3 

 

Figure 5.42 Load vs displacement relation of beam 3 at different pressures 

Table 5.18 Load vs displacement relation of beam 3 at different pressures 

p=20kPa p=40kPa p=60kPa p=80kPa 

u(mm) P(N) u(mm) P(N) u(mm) P(N) u(mm) P(N) 

7 100 8 200 10 230 13 300 

14 130 12 280 13 260 18 350 

18 170 18 350 19 600 23 570 

24 370 22 390 22 940 29 950 

34 600 32 620 32 1360 36 1380 

47 860 44 880 41 1560 43 1860 

58 1170 55 1190 51 1850 52 2300 

69 1440 65 1450 61 2020 64 2670 

71 1600 71 1890 72 2350 73 3320 

85 1440 85 1450 85 2020 85 2670 
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5.6.1.2 Comparison of 3 beams at pressure p = 80 kPa 

According to the experimental results, when the axial load-carrying capacity 

of the beam get higher, the air-pressure maginitude particularly increases. When the 

air pressure reachs 80 kPa, the average load of three beams is able to withstand a 

maximum load of 2342 kN as shown in Table 5.19. The highest deviation of this 

critical load on the beams which compared to the average value is approximately 

5.85%. This result indicates the uniformity of the specimen during the fabrication 

process. In summary, the beams with this result are fabricated by gluing with heat 

method… that give a similar result. 

The Figure 5.43 compares the buckling behaviour of the inflatable beams with 

different pressure applied, which demonstrates that the air pressure largely affects the 

stability of the inflatable beam. The experiment also shows that the maximum load-

carrying capacity is proportion to the applied pressure. 

 

Figure 5.43 Comparison of 3 beams at pressure p = 80 kPa 

Table 5.19 Comparison of 3 beams at pressure p = 80 kPa 
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Beam 1 Beam 2 Beam 3 

u(mm) P(N) u(mm) P(N) u(mm) P(N) 

9 300 12 300 13 300 

14 350 15 350 18 350 

19 570 22 570 23 570 

28 950 29 950 29 950 

34 1380 36 1380 36 1380 

41 1860 44 1860 43 1860 

48 2300 55 2300 52 2300 

63 2670 65 2670 64 2670 

73 3320 74 3320 73 3320 

83 2670 81 2670 85 2670 

5.6.2 Load vs displacement v relation of beam at pressure 

To evaluate the influence of relationship between the load and displacement 

horizontal direction, each beam was examined respectively with pressure values of 

20 kPa, 40 kPa, 60 kPa and 80 kPa. Each experiment was performed four times. 

Experimental results are presented in Figure 5.44, Figure 5.45, Figure 5.46 and 

Figure 5.47. These results also show that when the pressure increases, the load 

capacity increase simultaneously and the displacing value before cracking also 

increases respectively. 

a) p = 20 kPa 

  



CHAPTER 5: BUCKLING EXPERIMENTS OF INFLATING BEAMS 

134 

 

Figure 5.44 Load vs displacement relation of beam at pressure p = 20kPa 

Table 5.20 Load vs displacement relation of beam, p = 20 kPa 

P(N) 
v(mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

100 19 29 31 17 24 

130 21 30 30 23 26 

170 25 33 32 27 29 

370 32 39 37 30 34 

600 39 48 45 37 42 

860 45 60 56 50 53 

1170 58 66 62 68 64 

1440 71 69 68 82 73 

1600 80 86 76 95 84 

1440 85 90 85 105 91 

1170 90 95 90 110 96 

370 100 100 100 120 105 

P(N) 
v(mm) Beam 2 

Test 1 Test 2 Test 1 Test 4 Average 

100 33 38 40 39 38 

130 32 39 42 40 38 

170 33 41 42 42 40 
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370 39 44 45 43 43 

600 46 49 47 51 48 

860 54 60 52 53 55 

1170 67 76 69 68 70 

1440 80 85 78 85 82 

1600 94 100 95 108 99 

1440 110 110 105 115 110 

1170 120 112 115 119 117 

600 125 122 122 125 124 

P(N) 
v(mm) Beam 3 

Test 1 Test 2 Test 1 Test 4 Average 

100 31 34 35 43 35 

130 31 34 35 43 36 

170 31 34 36 43 36 

370 31 35 65 45 44 

600 36 39 92 53 55 

860 56 59 110 65 73 

1170 90 80 133 90 98 

1440 120 100 148 103 118 

1600 137 123 167 126 138 

1440 145 130 178 135 147 

1170 155 135 182 145 154 

600 160 145 190 155 163 

 

 

 

 

 

 

 



CHAPTER 5: BUCKLING EXPERIMENTS OF INFLATING BEAMS 

136 

b) p = 40 kPa 

  

 

Figure 5.45 Load vs displacement relation of beam at pressure p =40 kPa 

Table 5.21 Load vs displacement relation of beam, p = 40 kPa 

P(N) 
v(mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

200 38 42 38 45 41 

280 39 43 39 47 42 

350 41 45 40 49 44 

390 44 48 45 55 48 

620 60 52 52 65 57 

880 74 65 67 81 72 

1190 100 94 82 85 90 
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1450 115 110 95 97 104 

1890 147 150 132 110 135 

1450 165 167 155 135 156 

1190 170 172 162 150 164 

620 175 185 171 152 171 

P(N) 
v(mm) Beam 2 

Test 1 Test 2 Test 1 Test 4 Average 

200 35 40 38 40 38 

280 36 41 40 43 40 

350 38 44 47 48 44 

390 44 48 56 56 51 

620 51 57 62 79 62 

880 64 65 70 94 73 

1190 90 74 89 103 89 

1450 110 76 98 115 100 

1890 139 80 110 138 117 

1450 145 90 125 145 126 

1190 152 95 130 150 132 

620 155 110 135 155 139 

P(N) 
v(mm) Beam 3 

Test 1 Test 2 Test 1 Test 4 Average 

200 40 39 47 54 45 

280 40 39 49 54 46 

350 40 48 53 56 49 

390 41 50 63 64 55 

620 55 65 85 85 73 

880 70 82 115 96 91 

1190 96 100 135 115 111 

1450 110 120 149 129 127 
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1890 134 159 166 139 149 

1450 140 165 175 145 156 

1190 145 172 182 152 163 

620 155 180 190 160 171 

 

c) p = 60 kPa 

  

 

Figure 5.46 Load vs displacement relation of beam at pressure p = 0 kPa 

Table 5.22 Load vs displacement relation of beam, p = 60 kPa 

P(N) 
v(mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

230 37 47 31 17 33 

260 40 48 32 18 35 
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600 50 49 35 20 39 

940 60 53 39 26 44 

1360 77 75 50 32 59 

1560 88 81 58 40 67 

1850 100 94 77 58 82 

2020 120 115 90 73 100 

2350 150 145 114 93 126 

2020 160 155 130 110 139 

1850 166 160 135 115 144 

940 180 175 155 145 164 

P(N) 
v(mm) Beam 2 

Test 1 Test 2 Test 1 Test 4 Average 

230 34 34 38 20 31 

260 35 34 39 26 34 

600 38 37 46 36 39 

940 50 44 55 55 51 

1360 65 55 57 72 62 

1560 80 65 65 84 74 

1850 100 85 80 98 91 

2020 120 110 90 105 106 

2350 153 151 120 121 136 

2020 162 165 130 130 147 

1850 165 168 135 138 152 

940 172 176 150 145 161 

P(N) 
v(mm) Beam 3 

Test 1 Test 2 Test 1 Test 4 Average 

230 51 56 57 62 56 

260 52 56 57 62 57 

600 53 59 60 64 59 
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940 56 65 64 74 65 

1360 63 83 73 93 78 

1560 71 100 83 102 89 

1850 90 114 97 120 105 

2020 110 125 107 125 117 

2350 132 146 120 149 137 

2020 140 155 135 155 146 

1850 148 168 138 168 156 

1360 155 175 145 178 163 

d) p = 80 kPa 

  

 

Figure 5.47 Load vs displacement relation of beam at pressure p = 80 kPa 
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Table 5.23 Load vs displacement relation of beam, p = 80 kPa 

P(N) 
v(mm) Beam 1 

Test 1 Test 2 Test 3 Test 4 Average 

300 23 28 33 30 28 

350 23 29 33 33 30 

570 28 33 35 37 33 

950 32 41 39 50 40 

1380 55 55 43 56 52 

1860 85 79 47 64 69 

2300 100 95 60 79 83 

2670 115 110 75 95 99 

3320 131 120 106 120 119 

2670 140 130 117 125 128 

2300 145 135 122 130 133 

950 152 145 132 133 141 

P(N) 
v(mm) Beam 2 

Test 1 Test 2 Test 1 Test 4 Average 

300 19 30 27 30 26 

350 19 35 30 31 28 

570 19 42 35 39 34 

950 25 50 48 49 43 

1380 34 59 78 73 61 

1860 58 68 90 90 77 

2300 75 75 111 111 93 

2670 90 83 120 121 104 

3320 113 106 138 135 123 

2670 125 120 145 145 134 

2300 135 128 148 155 142 
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950 140 135 156 162 148 

P(N) 
v(mm) Beam 3 

Test 1 Test 2 Test 1 Test 4 Average 

300 65 65 66 70 66 

350 65 67 68 71 68 

570 68 71 73 76 72 

950 73 90 85 86 83 

1380 84 96 92 93 91 

1860 92 101 101 101 99 

2300 96 114 111 111 108 

2670 101 117 116 125 115 

3320 113 134 132 154 133 

2670 125 140 144 160 142 

2300 135 148 152 170 151 

1380 144 159 160 175 160 

5.6.2.1 Beams inflated with different air pressures 

a) Beam 1 
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Figure 5.48 Load vs displacement relation of beam 1 at different pressures 

Table 5.24 Load vs displacement relation of beam 1 at different pressures 

P=20kPa P=40kPa P=60kPa P=80kPa 

v(mm) P(N) v(mm) P(N) v(mm) P(N) v(mm) P(N) 

24 100 41 200 33 230 28 300 

26 130 42 280 35 260 30 350 

29 170 44 350 39 600 33 570 

34 370 48 390 44 940 40 950 

42 600 57 620 59 1360 52 1380 

53 860 72 880 67 1560 69 1860 

64 1170 90 1190 82 1850 83 2300 

73 1440 104 1450 100 2020 99 2670 

84 1600 135 1890 126 2350 119 3320 

91 1440 156 1450 139 2020 128 2670 

96 1170 164 1190 144 1850 133 2300 

105 370 171 620 164 940 141 950 

b) Beam 2 
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Figure 5.49 Load vs displacement relation of beam 2 at different pressures 

Table 5.25 Load vs displacement relation of beam 2 at different pressures 

P=20kPa P=40kPa P=60kPa P=80kPa 

v(mm) P(N) v(mm) P(N) v(mm) P(N) v(mm) P(N) 

38 100 38 200 31 230 26 300 

38 130 40 280 34 260 28 350 

40 170 44 350 39 600 34 570 

43 370 51 390 51 940 43 950 

48 600 62 620 62 1360 61 1380 

55 860 73 880 74 1560 77 1860 

70 1170 89 1190 91 1850 93 2300 

82 1440 100 1450 106 2020 104 2670 

99 1600 117 1890 136 2350 123 3320 

110 1440 126 1450 147 2020 134 2670 

117 1170 132 1190 152 1850 142 2300 

124 600 139 620 161 940 148 950 

c) Beam 3 
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Figure 5.50 Load vs displacement relation of beam 3 at different pressures 

Table 5.26 Load vs displacement relation of beam 3 at different pressures 

P=20kPa P=40kPa P=60kPa P=80kPa 

v(mm) P(N) v(mm) P(N) v(mm) P(N) v(mm) P(N) 

35 100 45 200 56 230 66 300 

36 130 46 280 57 260 68 350 

36 170 49 350 59 600 72 570 

44 370 55 390 65 940 83 950 

55 600 73 620 78 1360 91 1380 

73 860 91 880 89 1560 99 1860 

98 1170 111 1190 105 1850 108 2300 

118 1440 127 1450 117 2020 115 2670 

138 1600 149 1890 137 2350 133 3320 

147 1440 156 1450 146 2020 142 2670 

154 1170 163 1190 156 1850 151 2300 

163 600 171 620 163 1360 160 1380 

5.6.2.2 Comparison of 3 beams at pressure p = 80 kPa 
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Figure 5.51 Comparison of 3 beams at pressure p = 80 kPa 

Table 5.27 Comparison of 3 beams at pressure p = 80 kPa 

Beam 1 Beam 2 Beam 3 

v(mm) P(N) v(mm) P(N) v(mm) P(N) 

28 300 26 300 66 300 

30 350 28 350 68 350 

33 570 34 570 72 570 

40 950 43 950 83 950 

52 1380 61 1380 91 1380 

69 1860 77 1860 99 1860 

83 2300 93 2300 108 2300 

99 2670 104 2670 115 2670 

119 3320 123 3320 133 3320 

128 2670 134 2670 142 2670 

133 2300 142 2300 151 2300 

141 950 148 950 160 1380 

5.7 Comparison between experimental and IGA numerical methods 

Figure 5.52 and Figure 5.53 compare the experimental results and numerical 

results obtained from IGA. In general, it is seen that the results obtained from 

experiments and those from IGA are somewhat similar in the structural response of 

inflating beams.  

For the beams with low pressure, it can be seen that the experimental results 

and modelling results are not in good agreement. However, if the pressure in the beam 

increases, the prediction of IGA model becomes close to the experimental results. 

This phenomenon can be explained as follows:  

- In the experimental process, while we inflate and conduct experiments at low 

pressures, the beam is not tension enough so that it can keep the beam firm at this 

time. We can just put the sensors in at this time and it creates settlement on the beam 

body. At the same time, the sensor has not received the result of compressive force 

during the compression process.  
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- The formation according to “u” changes that make the beam radius increases. 

The result was that we can see initial stages of experiments, the sensors often earlier 

receive the results on the diagrams. However, when increasing the pump pressure in 

the beam, we observe that the numerical and experimental results are converged.  

 

  

  

Figure 5.52 IGA prediction vs Experimental results, in axial displacement u with 

air pressure 20 kPa, 40 kPa, 60 kPa and 80 kPa 
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Figure 5.53 IGA prediction vs Experimental results, in transverse displacement v 

with air pressure 20 kPa, 40 kPa, 60 kPa and 80 kPa 

 The discepancy between experimental and numerical results for low-pressure 

beam might be explained due to several aspects, which are summarized as follows: 

- The shortage in the real material information and errors in experiemental 

procedures might caused significant errors in the experimental results. 

- The numerical silmulation dose not account for the failure of material, which 

might be the main failure reason in case of low pressure inflating beams. 

- Material models used in the numerical approach might not appropriate for 

the use of composite fabric material, this need further comprehensive investigations. 

5.8 Conclusion 

In this chapter, an experimental program was conducted in details to 

investigate the buckling response of HOWF inflating beams. First of all, some tests 

are conducted to find out the properties of material. Then the buckling tests are 
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successfully conducted with different air pressure. The results of axial load-deflection 

are recorded and then compared with numerical predictions based on Isogeometric 

Analysis.  

The experiment results show that the strength of inflating beams increase with 

the raise of air pressure. This is consistent with those obtained from numerical 

prediction in the previous chapter. In addition, it is found out that the numerical 

models only show acceptable prediction for the inflating beams with high pressure. 
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CHAPTER 6: CONCLUSIONS AND FURTHER 

STUDIES 

 

6.1 Conclusions 

In this study, a numerical modelling technique and an experimental program 

are conducted to investigate the stability behaviour of inflating beam made from 

composite materials.  

The numerical modeling is conducted based on Isogeometric Analysis 

approach, in which the beam models are developed based on Timoshenko’s beam 

theory. The governing equations are derived based on total Lagrange approach, in 

which the membrane and bending actions are considered simultaneously. The 

NURBS basis funtions of IGA approach are ultilized to descrized the governing 

equations and develope the global equations. Both linear and nonlinear buckling 

analyses are carried out. In the nonlinear buckling analysis, the well-known Newton-

Raphson technique is adopted to trace the buckling curves. Validiation and various 

parametric studies are conducted to show the reliability of the approach and study the 

influence of internal pressure in the beams. 

In the experimental study, the material propeties of pabric composite material 

are firstly investigated. Then, the buckling tests are caried out to study the behaviour 

of inflating beams with different air pressure. Experimental resutls are also comprared 

with those obtained from the numerical modeling approach. 

Some major conclusions drawn from this study cound be summaried as 

follows: 

- A numerical approach based on IGA was successfully developed to 

investigate the stability of inflating beams. 

- The results obtained from IGA approach are in good agreement with those 

from traditional FEM. In addition, it was found out that IGA-based approach has a 

better convergence rate than FEM. 
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- From the numerical modeling and experimental results, it is seen that the 

stability strength of inflating beams increases with the level of the internal pressure. 

- The prediction of the proposed IGA-based numerical model is more reliable 

in cases that pressure is high, for cases with low pressure, the prediction show a 

similar prediction trend with experiemental results but the predicted strength is 

smaller than experiemental resutls. 

6.2 Further studies 

The thesis has achieved certain results; however, there are still problems un-

resolved which related to the selection of materials, air-beams producing, and 

measuring methods. Therefore, this study could be expanded to those with infilled-

gas beams and other inflating structures. Different loading conditions and different 

shapes of the inflating structures could be considered to be investigated in future.  

For the numerical model, the problems could be extended to those which also 

considered the failure of composite materials. Other modelling techniques, e.i. using 

3d shell model, could be used as an alternative approach to investiga the response of 

the inflating beams, especially when the local reponses is of interest. 

As the results showed that there are inconsistancies between numerical and 

experimental results for low-pressure beams and this could came from various 

sources of errors, a rigorious experimental procedure might be considered for further 

investigation. A more complex numerical, which considers the influence of air 

pressure in a different manner, might be used for a better prediction. 
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